D-dimer is a specific degradation product resulting from the digestion of cross-linked fibrin by plasmin. It is composed of two identical subunits deriving from two fibrinogen molecules. High D-dimer levels are to be expected in the presence of increased fibrin formation and of an efficient fibrinolytic system. Thus, with only few exceptions, D-dimer should be considered a marker of intra- or extravascular fibrin formation rather than fibrinolysis. Soon after the introduction of the very first assay suitable for its measurement, the potential utility of D-dimer measurements for the diagnosis of deep vein thrombosis became evident. The purpose of this review is to outline some critical aspects affecting cost-effectiveness of D-dimer measurements in the diagnosis of deep vein thrombosis (DVT).

Results. D-dimer levels are very sensitive to the process of fibrin formation/dissolution occurring with ongoing thrombosis. However, they may not be highly specific for venous thromboembolism as they are influenced by the presence of comorbid conditions potentially elevating plasma D-dimer (cancer, surgery, infectious diseases). In addition, commercially available ELISA assays, although quantitative and reproducible, cannot be used under emergency conditions because they are time-consuming and suited for batch-processing of plasma samples. Recently, new assays have been introduced which permit fast and quantitative D-dimer estimations in individual patients. We have evaluated the utility of two new rapid assays (LPIA D-dimer, Mitsubishi, and VIDAS D-DIMER, bioMerieux) in combination with compression real-time-B-mode ultrasonography for the detection of deep vein thrombosis in asymptomatic patients following elective hip replacement and in patients with clinically suspected deep vein thrombosis. In both settings, we identified cut-off values with optimal sensitivity which allow exclusion of deep vein thrombosis in a considerable percentage of patients, with substantial sparing of economic resources. In fact, based on a cost-effectiveness analysis, a diagnostic algorithm combining D-dimers measurement and compression ultrasonography would result in cost-savings ranging from 5% to 55% in patients with high or low clinical pre-test probability respectively. However, the specificity of D-dimer measurements for deep vein thrombosis was much higher in symptomatic than in asymptomatic patients. Choice of the cut-off value proved to be dependent on the method as well as on the patient populations studied.

Conclusions. The cost-effectiveness of D-dimers measurement in the diagnosis of asymptomatic DVT remains questionable. Conversely, our data strongly support the utility of D-dimers determinations in the diagnosis of symptomatic DVT. In terms of sparing economic resources, the introduction in the clinical laboratory of the rapid quantitative assays would be highly convenient, because they avoid a source of bias in the interpretation of D-dimers results, are easy to perform and do not require dedicated personnel or instrumentation. Prospective management studies validating the utility of D-dimer measurement in the diagnosis of deep vein thrombosis are urgently needed.
some critical aspects affecting the cost-effectiveness of D-dimer measurements in the diagnosis of deep vein thrombosis (DVT).

**D-dimer or D-dimers?**

D-dimer is the final proteolytic split product formed by the action of plasmin on cross-linked fibrin in the presence of calcium. The D-dimer exposes neoantigens not present in the parent fibrinogen molecule. However, the D-dimer configuration carrying the same neoantigens also occurs in a number of intermediate, soluble, fibrin split products. Thus, at least in theory, the term “D-dimers” should be preferable. This distinction also has a practical implication in D-dimers testing. The measurement of D-dimer using antibodies directed against the neoantigens involves measuring a broad range of molecules derived from cross-linked fibrin. Reactivity towards the various fragments varies with the monoclonal antibody used and this accounts for the difficulties encountered in the standardization of D-dimer assays. Indeed the purified D-dimer preparations used for internal calibration are qualitatively different from the D-dimers moieties detected in circulating plasma. This is most probably the basis for the different absolute D-dimer values observed in a normal population tested with different commercial kits (Table 1).

**The potential utility of D-dimers measurement in the diagnosis of symptomatic deep vein thrombosis**

The clinical diagnosis of DVT is erroneous in about half of symptomatic patients. Recently, a detailed questionnaire has been proposed to quantitate the clinical probability of thrombosis before diagnostic testing (pretest probability). Although a good relationship was observed between the clinical pretest probability (low, moderate, high) for DVT and the prevalence of the disease as proved by venography, this approach can hardly be used widely in clinical practice.

Venography is considered the only proven accurate method for the diagnosis of all deep vein thromboses. It carries, however, major limitations which hamper its use for screening purposes in high-risk patients. The technique is invasive, requires experienced personnel and dedicated instrumentation, and involves a definite albeit minimal risk to patients. As a result, many noninvasive techniques have been proposed to replace venography. Compression ultrasonography, impedance plethysmography and doppler ultrasonography have been evaluated for their accuracy in the diagnosis of symptomatic DVT. Of the above techniques, only compression ultrasonography has achieved a large consensus and clinical validation. However, like the other non-invasive methods, compression ultrasonography shows relatively low sensitivity to distal vein thrombosis because of the poorly visible compressibility of the calf veins. Thus, serial testing over a 7-day period is considered mandatory for patients with a suspected DVT who initially present normal compression ultrasonography (Figure 1). This procedure is, however, time-consuming and expensive. Moreover, a significant proportion of outpatients may be lost at follow-up.

In this setting, the contribution of D-dimer mea-

---

**Table 1. D-dimer levels (µg/mL) in 24 healthy subjects as measured with 4 different commercial kits.**

<table>
<thead>
<tr>
<th>Assay</th>
<th>Mean ± S.D.</th>
<th>Median</th>
<th>95% confidence limits of the distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPIA D-Dimer (Mitsubishi)</td>
<td>0.33±0.16</td>
<td>0.29</td>
<td>0.0-0.67</td>
</tr>
<tr>
<td>FDP-Slidex (bioMerieux)</td>
<td>&lt;0.25</td>
<td>&lt;0.25</td>
<td>&lt;0.25</td>
</tr>
<tr>
<td>Fibrinostika FbDP (Organon Teknika)</td>
<td>0.22±0.06</td>
<td>0.22</td>
<td>0.09-0.36</td>
</tr>
<tr>
<td>Fibrinostika TDP (Organon Teknika)</td>
<td>0.64±0.16</td>
<td>0.61</td>
<td>0.31-0.98</td>
</tr>
</tbody>
</table>

**Figure 1. Algorithm for the diagnosis of symptomatic deep vein thrombosis by compression ultrasonography (C-US).**
many ways. First, it might be used in combination with compression ultrasonography or other non-invasive techniques to identify patients with DVT despite an initially negative examination. Such an approach would allow definitive diagnosis concerning the presence or absence of DVT on the day of presentation in 42% of patients versus 19% of patients who would have been diagnosed with compression ultrasonography alone and it would significantly reduce diagnostic errors when using only strain-gauge plethysmography. D-dimers, combined with the use of the clinical model could be useful for excluding a diagnosis of DVT; alternatively, D-dimer determination could replace the clinical model in the evaluation of the clinical pretest probability of DVT. Moreover, should D-dimer testing be rapidly performed in individual patients and its negative predictive value approach 100% with satisfactory specificity at the corresponding cut-off value, this might eliminate the need for instrumental diagnosis of DVT in a considerable percentage of in- and outpatients, with a substantial savings of economic resources. Last but not least, measurement of D-dimer levels may be useful in the identification of DVT recurrence, which is often a true challenge to the clinician. However, it must be pointed out that D-dimer testing is potentially useful in clinical practice only if properly carried out and interpreted.

**D-dimer assays and their accuracy in the diagnosis of DVT**

Commercially available D-dimer assays include both semiquantitative and quantitative methods. Latex agglutination techniques or ELISAs based on color development when plasma D-dimers exceed a previously established cut-off value are popular semiquantitative assays. Quantitative assays are mainly based on ELISA technique. All methods of D-dimer testing have been evaluated in a number of published papers and their accuracy in the diagnosis of DVT is now well established. It is generally accepted that low D-dimer levels can be used to exclude the presence of DVT in clinically suspect patients. A comprehensive review of 1994 reports sensitivity and specificity of, respectively, 97% and 35% for quantitative and 83% and 68% for semiquantitative tests (Table 2).

To avoid misdiagnosing DVT, the D-dimer assay should have a negative predictive value of virtually 100%. This can be achieved only by using the quantitative methods which, on the other hand, are time-consuming and unsuitable for emergency purposes. During the last 3 years, new rapid quantitative methods have been introduced that are suitable for individual plasma D-dimer measurement. These techniques have advanced the use of D-dimers as a diagnostic tool in the clinical field. Recently, we evaluated a latex immunophotometric assay (LPIA D-dimer) and a fluorescence-based immunoassay (VIDAS D-dimer). Both assays proved to be rapid (turnaround time: 20-30 minutes) and suitable for clinical testing. Table 3 reports the accuracy in the diagnosis of symptomatic DVT of the novel rapid methods for D-dimer measurement.

**Factors influencing the cost-effectiveness of plasma D-dimer measurement in the diagnosis of deep vein thrombosis in symptomatic patients**

In addition to the negative predictive value, the cost-effectiveness of D-dimer measurement in the diagnosis of symptomatic DVT relies on its positive predictive value, which reflects the specificity of the assay and must also be high to allow significant cost savings. Only under these conditions is it possible to avoid further diagnostic procedures (invasive or non-invasive) in patients with suspected DVT and a negative D-dimer value.

The accuracy of the assay depends on both its sensitivity and specificity for DVT and is influenced by many factors which must be considered in a cost-effectiveness analysis. A first variable is represented by the instrumental diagnosis used to confirm or exclude the presence of DVT. Since non-invasive methods have a low sensitivity to distal DVT, the specificity and positive predictive value of D-dimer levels will be higher when venography is

<table>
<thead>
<tr>
<th>Instrumental diagnosis of DVT</th>
<th>D-dimer method</th>
<th>Cut-off value (µg/mL)</th>
<th>n</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venography</td>
<td>Latex agglutination</td>
<td>0.4-0.5</td>
<td>251</td>
<td>74%</td>
<td>70%</td>
<td>65%</td>
<td>78%</td>
</tr>
<tr>
<td>Non-invasive</td>
<td>Latex agglutination</td>
<td>0.4-0.5</td>
<td>482</td>
<td>89%</td>
<td>67%</td>
<td>57%</td>
<td>92%</td>
</tr>
<tr>
<td>Venography</td>
<td>ELISA</td>
<td>0.4-0.5</td>
<td>541</td>
<td>97%</td>
<td>47%</td>
<td>58%</td>
<td>96%</td>
</tr>
<tr>
<td>Non-invasive</td>
<td>ELISA</td>
<td>0.4-0.5</td>
<td>796</td>
<td>97%</td>
<td>29%</td>
<td>36%</td>
<td>95%</td>
</tr>
</tbody>
</table>
Cost-effectiveness of D-dimer measurement in DVT

Due to the inverse relationship between sensitivity and specificity, an increase in the specificity of the assay is associated with a decrease in sensitivity. If this is not the case, as reported in Tables 2 and 3, the cut-off values chosen to exclude the presence of DVT are most probably incorrect.

Cut-off values are strictly method dependent. When using semi-quantitative methods, the correct choice of the cut-off value is hampered by the intrinsic characteristic of the assay for which results are substantially expressed as positive or negative. For quantitative methods, exclusion of DVT diagnosis as based on the observation of D-dimers levels within the normal range would negatively affect the specificity – and hence cost-effectiveness – of the test. Rather, optimal cut-off values should be determined by receiver operator characteristics (ROC) curve analysis, which basically describes the relationship between true positive and false positive decisions. The cut-off value chosen must have a negative predictive value virtually identical to 100%, and it should be high enough to allow satisfactory specificity for DVT. Not surprisingly, cut-off values are largely dependent on the characteristics of the patient populations evaluated. Because D-dimers are elevated by inflammatory diseases and cancer, the prevalence of such comorbid conditions in the patient population tested to determine the cut-off level might influence the predictive value of the assay. These levels are also influenced by the average time elapsed between onset of symptoms and clinical observation of the patients. As shown in Figure 2, DVT related D-dimers levels are lower in patients with symptoms lasting for over one week and may even be normal 11 or more days after the onset of symptoms. This implies that optimal cut-off values are useful for excluding thrombosis only within a certain number of days from the onset of symptoms. Last but not least, the cost-effectiveness of clinical D-dimer testing also depends on the actual prevalence of deep vein thrombosis in the patient population. The potential for avoiding instrumental diagnosis in all patients with plasma D-dimer levels below the cut-off will lead to a substantial sparing of economic resources only if the prevalence of the disease is relatively low.

Based on our cost-effectiveness analysis, a diagnostic algorithm combining D-dimer measurement and compression ultrasonography (Figure 3) would result in cost-savings ranging from 5% to 55% in patients with high or low clinical pre-test probability, respectively.

Measurement of D-dimers may be extremely useful in the diagnosis of recurrent DVT. As already remarked, D-dimer levels show a decrease over time following the thrombotic event and they normalize within 15-20 days of the onset of symptoms. Irrespective of anticoagulant treatment, an increase in D-dimer levels is always associated with DVT recurrence. The diagnosis of DVT recurrence is very difficult and expensive in the absence of a prior instrumental diagnosis. In our hands, the measurement of D-dimers may allow up to a 77% cost-savings in patients with suspected DVT recurrence.

**Accuracy of D-dimers in the diagnosis of**

![Figure 2. Relationship of plasma D-Dimer levels (VIDAS D-Dimer, median and highest values) with the duration of symptoms in patients with (open bars) and without DVT (hatched bars) as diagnosed by compression ultrasonography (from ref. #32).](image)
The severity of the clinical picture of thrombosis depends on the fast growth and complete occlusiveness of the thrombus. Non-occlusive thrombi are often symptomless; however, they can lead to pulmonary embolism as frequently as occlusive ones. Asymptomatic DVT has a high prevalence in patients submitted to neurosurgery and to orthopedic or urologic surgery.

Non-invasive methods for the detection of DVT have demonstrated unsatisfactory sensitivity to asymptomatic DVT. On the other hand, venography can hardly be proposed for routine surveillance of all patients submitted to high-risk surgery. Under these circumstances, D-dimer measurement could be useful for identifying those patients requiring further invasive (venography) or non-invasive (serial compression ultrasonography) procedures. In establishing the proper D-dimer cut-off value, surgery-dependent elevations of D-dimer levels must be taken into account (Figure 4). We have identified a reasonably useful cut-off value for D-dimers only on the 10th postoperative day in patients submitted to prosthetic hip replacement. Compression ultrasonography could thus be limited to patients with D-dimer values above the cut-off and secondary prophylaxis should be started only in patients with proven DVT. It should be kept in mind, however, that the optimal cut-off value may change over time with the introduction of new surgical procedures and/or new thromboprophylactic drugs. Thus, updating of the cut-off value is mandatory from time to time.

Conclusions

The cost-effectiveness of D-dimer measurement in the diagnosis of asymptomatic DVT remains questionable. Conversely, our data strongly support the utility of D-dimer determinations in the diagnosis of symptomatic DVT. In terms of savings money, the introduction into the clinical laboratory of rapid quantitative assays would be extremely useful because they avoid a source of bias in the interpretation of D-dimer results, are easy to perform and do not require dedicated personnel or instrumentation. Although the preliminary data are promising, the algorithm presented in Figure 3 needs to be validated by prospective management studies investigating the safety of withholding non-invasive or invasive diagnostic procedures from patients with suspected DVT and a negative D-dimer test.

References

6. van Bergen PPM, Knot EAR, Jonker JJC, de Boer AC, de Maat MP. Is quantitative determination of fibrinogen degradation products and thrombin-antithrombin III complexes useful to diagnose deep venous thrombosis in outpatients? Thromb Haemost


