metabolism was unaffected since factors VII, IX, X, PC and PS were within the normal range. LA was found in one patient and may have been the cause of the PVT. Due to the importance of LA in thrombosis, this raises the question of whether LA could be investigated in children with PVT.

Acknowledgements

This work was supported in part by a grant to Hessel G. and Annichino-Bizzacchi JM from FAEP-Fundo de Apoio ao Ensino e Pesquisa, State University of Campinas, UNICAMP.

Correspondence

Joyce Maria Annichino-Bizzacchi, M.D., Hematology-Hemotherapy Center, UNICAMP, CP 6189 CEP 13081-970, Campinas, SP, Brazil. Fax: international +55-19-7888750.

References

Hyperammonemic encephalopathy in multiple myeloma

José A. Pérez Retortillo, Fernando Marco, Elena Amutio,* Eulogio Conde, Arturo Iriondo, Alberto Zubizarreta

Servicio de Hematología del Hospital Universitario “Marqués de Valdecilla”, Facultad de Medicina Universidad de Cantabria, Santander; *Servicio de Hematología del Hospital de Cruces, Baracaldo, Vizcaya, Spain

We report two cases of hyperammonemic encephalopathy in patients with multiple myeloma. This rare complication, whose pathophysiology remains unknown, is associated with disease progression and so with a very bad prognosis. We believe that this complication should be included in the differential diagnosis of encephalopathy occurring in multiple myeloma.

Hyperammonemia is usually found in chronic liver diseases with portal-systemic shunts and acute fulminant hepatic failure. It has also been described in hematologic malignancies such as acute leukemia, following bone marrow transplantation and in eleven patients with multiple myeloma (MM). We report two new cases of hyperammonemic encephalopathy in MM.

Patient #1. IgG λ MM was diagnosed in a 56-year-old woman. Five courses of vincristine, adriamycin and dexamethasone (VAD) resulted in good partial remission. Three months later she presented with a one-week history of alternating lucidity and delirium, lethargy and inappropriate behavior. Serum electrolytes and creatinine were normal. Serum IgG λ spike amounted to 1920 mg/dL. A lumbar puncture and a computed axial tomography were unremarkable. The electroencephalogram presented changes compatible with metabolic encephalopathy. Plasma ammonium concentration was 170 mg/dL (normal < 82 mg/dL). Bilirubin, liver transaminases, coagulation tests, viral hepatitis serology, an abdominal ultrasound and a transjugular liver biopsy showed no alterations. Dietary nitrogen was eliminated and oral lactulose therapy was started, but mental status and plasma ammonium levels did not improve. A bone marrow (BM) aspirate showed 84% plasma cells. Three days after reinstituting chemotherapy (VAD), plasma ammonium decreased to normal and the patient became rapidly asymptomatic. Three months later the patient developed the same symptoms and died of disease progression.

Patient #2. IgA κ MM was diagnosed in a 51-year-old man. Chemotherapy (VAD) and local radiotherapy to the ribs and lumbar spine were started. After 6 courses he presented with disorientation, bradypsychia and myoclonus. Neurological examination and a lumbar puncture were normal. A magnetic resonance imaging scan showed diffuse edema in the brain. The electroencephalogram recorded triphasic waves. Serum electrolytes and renal and liver function were normal. Plasma ammonia level was 233 mg/dL. Serum IgA κ spike amounted to 4000 mg/dL. There were progressive osteolytic lesions and 100% plasma cells in BM aspirate were demonstrated. The clinical manifestations were ascribed to hyperammonemic encephalopathy and treatment with dexamethasone (8 mg/day) was started. Hyperammonemia and the neurologic alterations improved immediately after chemotherapy (VAD) was instituted. One month later the patient again presented with hyperammonemic encephalopathy and died of dis-
ease progression.

Hyperviscosity and hypercalcemia are the usual causes of encephalopathy in MM. Hyperammonaemic encephalopathy is usually described in serious liver dysfunction and is characterized by lethargy, confusion and asterixis, which can progress to coma and death.¹

Mitchell et al.³ identified this complication in eight of 460 patients who had leukemia or had had a bone marrow transplantation. A few cases have also been reported in MM.⁴⁻¹⁰ The etiology of this syndrome has yet to be determined. Matsuzaki et al.⁶ found that the myeloma cells from a patient with hyperammonaemic encephalopathy secreted ammonia at a high level into the culture medium.

Different treatments (protein restriction, lactulose, neomycin, plasmapheresis, hemodialysis...) have been tried in this syndrome,⁴⁻¹⁰ but only chemotherapy has been successful. Nevertheless this complication is associated with disease progression and so with a very bad prognosis. We suggest that hyperammonaemic encephalopathy should be included in the differential diagnosis of disturbances of consciousness in MM.

Keywords
Multiple myeloma, encephalopathy, hyperammonemia

Correspondence
Fernando Marco, M.D., Servicio de Hematología, Hospital Universitario “Marqués de Valdecilla”, Avda Valdecilla 1, Santander 39008, Spain. Phone: international +34-942-202573 • Fax: international +34-942-202655.

References

High prevalence of anti-HGV/E2 antibodies in HCV-positive patients with non Hodgkin’s lymphoma

GIUSEPPE CIVARDI, ELISABETTA TANZI,† BENVENUTO FERRARI, DANIELE VALLISA, ALESSANDRO ZANETTI,*, **LUIGI CAVANNA**

† 1ª Divisione di Medicina Interna, Sezione di Ematologia, Ospedale Civile, Piacenza; *Istituto di Virologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano, Italy

We evaluated in a series of 33 HCV positive (both RT-PCR and HCV RIBA 2 assays) B cell non-Hodgkin's lymphomas (NHL) patients the prevalence of active and inactive HGV infection by HGV RNA assays (RT-PCR) and anti HGV antibodies directed against E2 structural protein (immunoenzimatic method), a reliable serologic marker of past HGV infection followed by viral clearance. We found only one patient with HGV positivity at RT-PCR (3%). Twenty-six of 33 patients were positive for anti HGV/E2 antibodies (78.8%) suggesting past infection. If confirmed, our preliminary data seem to suggest a higher incidence of HGV past infection in our group of HCV positive patients with B cell NHL.

A possibile etiologic correlation between hepatitis C virus (HCV) and B cell NHL was recently suggested by some authors,¹³ and the ability of HCV to infect lymphocytes and to determine clonal expansion of such cells has been clearly documented. Another flaviviridae agent, GBV-C/HGV, was recently isolated and described as a possible etiologic agent of non A-E hepatitis. There is a close molecular correlation between HCV and HGV and co-infection with HGV is frequent in HCV positive patients.

The prevalence of HGV infection in B cell lymphomas is not known, although if there are some preliminary data from Italy¹⁶ and Japan.¹⁷ Zignego et al.⁶ reported a 6% of prevalence of HGV RNA in a series of 150 B cell NHLs: no significant differences in HGV RNA prevalence was found between HCV positive (n = 37) and negative (n = 113) cases. The HGV prevalence in Italian NHL patients was similar to that observed in non A-E hepatitis patients but significantly higher than that in healthy subjects. On the other hand, Nakamura et al.¹⁸ found 4 HCV RNA positive cases and one HGV RNA/HCV RNA positive case in a series of 51 B cell NHL patients (2% of prevalence for HGV RNA).

We, therefore, evaluated, in a series of 33 HCV positive (both RT-PCR and HCV RIBA 2 assays) B cell NHL patients, the prevalence of active and inactive