Therapy-related acute leukemia associated with involvement of 11q23 after high grade non-Hodgkin lymphoma

GIOVANNI MARTINELLI, NICOLETTA TESTONI, PIER LUIGI ZINZANI, ANDREA BIONDI,* GIUSEPPE CIMINO,* SANTE TURA
Institute of Hematology and Medical Oncology “Seràgnoli”, S. Orsola Hospital, University of Bologna, Italy; *Clinica Pediatrica, University of Milan, Italy; °Department of Molecular Biology, “La Sapienza” University, Rome, Italy

Therapy-related acute myeloid leukemias with balanced translocations affecting the 11q23 chromosome region are one of the most serious complications of treatments with topoisomerase II inhibitor drugs as epipodophillotoxins and anthracyclines.1, 2, 5 These cases are usually associated with short interval time from previous chemotherapies, absence of myeloid dysplastic phase, hyperleukocytosis and young age. We and others have recently identified and cloned the ALL1 gene at 11q23 band (also named MLL, HRX, Hrxt) which is consistently altered in t-AML following therapies with top II targeting drugs.1 However, there are few reports of cases of t-AML, clinically and biologically similar to the subtype of leukemias secondary to exposure to top II inhibitors drugs but without the involvement of the ALL1 gene. These observations suggest that genes other than ALL1 which are etiopathogenetically relevant for hematological neoplasias are located in this cytogenetic region.

A 27-year-old man was admitted to our institution in June 1994 with a 4-week history of fever, anorexia and weight loss. Chest X-ray and CT scan showed a mediastinal mass with enlargement. A bone marrow (BM) aspirate and biopsy revealed normocellular BM. The diagnosis of high-grade B-cell lymphoblastic NHL with sclerosis was made on a needle biopsy of the mediastinal mass. No cytogenetic analysis was done on the BM at diagnosis. The clinical stage was defined as IA bulky.

From September 1994 to January 1995 the patient received 11 courses of the MACOP-B chemotherapy with cytosine arabinoside, vincristine, adriablastine, methotrexate and etoposide, achieving only partial remission due to the persistence of 20% of the initial mediastinal mass.3,4 Local radiotherapy (RT) (3600 cGY/fac, with inverted fields) was administered from March to April 1995. One week after the end of RT, an hemochromocytometric analysis revealed 19×10^9/L WBC with 98% of blasts with monocytic features. At this time the BM biopsy showed a total substitution by leukemic blasts. On the basis of standard morphological, immunological and cytochemical criteria a diagnosis was made of acute myeloid leukemia, FAB M4. The karyotype was 46 XX, t(7;11) (p21;q23), t(10;X) (p14;q24). The ICE protocol was administered as treatment of AML without achieving a CR. The patient died from infective complication in June 1995.

An ALL1 germline genomic configuration was detected by Southern blot analysis of DNA from both the mediastinal mass at the time of diagnosis of NHL and from BM leukemic blasts at the onset of AML. To this purpose DNA was digested to completion with Bam HI and Hind III endonucleases and hybridized with the B859 probe, which is a cDNA insert containing the ALL1 exon S-11 sequences.

Our case report allows us to draw some possible etiopathogenetic suggestions on t-AML leukemogenesis. Firstly, the observation from the literature that none of the rare cases of NHL with 11q23 developed a t-AML rule out the hypothesis that t-AML represents an evolution of the natural history of the disease.7,8 It is well known in fact that t-AML after NHL is a serious complication of treatments including top II inhibitors drugs usually with consistent involvement of the ALL1 gene at 11q23.1 Moreover, the identification within the ALL1 breakpoint cluster region of DNA structures involved in the top II machinery, such as high-affinity scaffold attachment regions and topoisomerase II binding sites, has provided a strong pathogenetic linkage in this leukemic subset between chemotherapeutic agents and targeting gene.6

However, the observation that the ALL1 gene is not always altered in cases with clinical, biological and cytogenetic features similar to those of ALL1+ t-AML suggests that in the 11q23 cytogenetic band gene(s) other than ALL1 could exist that are involved in the pathogenesis of t-AML. In this respect, it is interesting to note at least two other genes implicated in hematological malignancies which have been identified within this cytogenetic region: namely, the p54/RCK gene found altered in two B cell malignant lymphomas with t(11;14) (q23;q32) cytogenetic translocation, and the PLZF gene coding a ZF protein which is fused to the RARA in acute promyelocytic leukemia with t(11;17) (q22;q21) abnormality.6-10 In conclusion, the present case provides further evidence of the need to search for other gene(s) located in this region which could be involved in the pathogenetic mechanism leading to t-AML after exposure to chemotherapeutic treatments.

Funding
This work was supported by Associazione Italiana per la Ricerca sul Cancro (A.I.R.C.), by Italian C.N.R “A.C.R.O.” no. 94.01222 and by 95.2206 C.N.R. target projects.

Key words
Non-Hodgkin’s lymphoma, 11q23, acute leukemia

Correspondence
Dr. Giovanni Martinelli, Institute of Hematology and Medical Oncology “Seràgnoli”, University of Bologna, S. Orsola Hospital, via Massarenti 9, 40138 Bologna, Italy. Phone: international +39-51-6364075 • Fax: international +39-51-398973.
acute leukemia and in treatment-
bacteremia have been reported, twenty-one
bacteremia were recorded. One
bacteremia is uncommon,

References

1. Roulston D, Anastasi J, Rudinsky R, et al. Therapy-
related acute leukemia associated with t(11q23) after
primary acute myeloid leukemia with t(8;21): a report
fluclarbene-containing therapy (FLAG-FLANG) in poor
risk acute myeloid leukemia. Haematologica 1996;
81:513-20.
1, the locus involved in leukemias with the t(4;11)
(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13)
chromosome translocations. Cancer Res 1991; 51:
6712-4.
chromosome 11q23 is consistently altered in acute
5. Gallagher A, Darley RL, Padua R. The molecular basis
of myelodysplastic syndromes. Haematologica 1997;
82:191-204.
of 11q23 breakpoints within the MLL breakpoint cluster
region in de novo acute leukemia and in treatment-
related acute myeloid leukemia: correlation with scaffold
attachment region and topoisomerase II consensus
7. Bloomfield CD, Arthur DC, Frizzera G, Levine EG,
Peterson BA, Gajl-Peczalska KJ. Nonrandom chromo-
some abnormalities in lymphoma. Cancer Res 1983;
43:2975-84.
tures of Hodgkin’s disease suggest possible origin from
9. Zinzani PL, Bendandi M, Gherlinzoni F, et al. VNCOP-
B regimen in the treatment of high-grade non-Hodgkin’s
lymphoma in the elderly. Haematologica 1993;
78:378-2.
of a new human lymphoma cell line (RC-K8)
with t(11;14) chromosome abnormality. Cancer 1986;
58:1453-60.

Achromobacter xylosoxidans bacteremia in patients with hematologic malignancies

José-Angel Hernández,* Rodrigo Martíno,
Roser Pericas,* Anna Sureda, Salut Brunet,
Andreu Domingo-ALbós†

1 in memoriam
Unitat d’Hematologia Clinica, Departament d’Hematologia and
*Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau,
Barcelona; *Servei d’Hematologia-Hemetoterapia, Hospital Ger-
mans Trias i Pujol, Badalona, Barcelona, Spain

We report nine cases of Achromobacter xylosoxidans
bacteremia diagnosed in patients with hematologic
malignancies. There was not an obvious epidemi-
ologic link between cases and the organism was not
isolated from any source. Outcome was cure in all
nine cases. In our experience, catheter removal is
generally required for eradication of A. xylosoxidans.

Achromobacter xylosoxidans is a non-fermenting gram-
negative rod widely distributed in the environment,
like hospital fluids, from which outbreaks of nosoco-
mial infections may occur.1,3 About 90 cases of A.xyl-

Table 1. Patient characteristics. I.

| Cases | Sex/
age | Underlying disease | Recent BMT (days) | Severe neutropenia | Inpatient |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M/22</td>
<td>NHL</td>
<td>ABMT (+3)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>M/40</td>
<td>CML</td>
<td>ABMT (+3)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>M/40</td>
<td>HD</td>
<td>ABMT (+2)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>M/27</td>
<td>ALL</td>
<td>ABMT (+3)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>F/33</td>
<td>ALL</td>
<td>none*</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>M/46</td>
<td>AML+GHVD</td>
<td>BMT (49 months)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>M/46</td>
<td>AML+GHVD</td>
<td>BMT (57 months)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>M/59</td>
<td>MM</td>
<td>ABMT (+3)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>9</td>
<td>M/43</td>
<td>HD</td>
<td>ABMT (+2)</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

*Consolidation chemotherapy. NHL: non-Hodgkin’s lymphoma; CML: chron-
ic myelogenous leukemia; HD: Hodgkin disease; ALL: acute lymphoid
leukemia; AML: acute myelogenous leukemia; GHVD: graft-versus-host dis-
eease; MM: multiple myeloma; ABMT: autologous bone marrow transplan-
tation; BMT: allogeneic bone marrow transplantation.