Prognosis and therapy of secondary myelodysplastic syndromes

ELIHU H. ESTEY
Department of Leukemia, Hematology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA

Abstract

This is an invited review of a condition that is likely to become increasingly frequent in coming years. The objective is to define the varying prognoses of the condition and to discuss treatment options for patients with better and worse prognoses. The source of the data is the literature. Of particular note are the paper by Greenberg et al. describing the International Prognostic Scoring System for MDS and that by Estey et al. describing the similar response of AML, RAEB-t, and RAEB to AML-type chemotherapy. The state of the art is that no satisfactory therapeutic options exist; consequently, the majority of patients with secondary MDS should participate in clinical trials.

Key words: International Prognostic Scoring system, erythropoietin, G-CSF, AML-type chemotherapy, topotecan, allogeneic transplant

Secondary myelodysplastic syndromes (secondary MDS) are those that present in patients who have received chemotherapy ± radiation therapy, generally for a malignancy such as Hodgkin’s disease or breast cancer. The review immediately preceding this one deals with chromosome abnormalities and their relationship to prior therapy in patients with secondary MDS, as well as clinical characteristics of secondary MDS. This review will focus on prognosis and treatment of these disorders.

In medicine it is axiomatic that treatment is determined by prognosis. Indeed many different prognostic systems have been developed for patients with MDS.1-5 These were essentially based on data from patients with primary MDS. In the early-mid 1990s the authors of the principal papers dealing with prognosis of MDS collaborated in establishing an International Prognostic Scoring System (IPSS). This system derived exclusively from 816 patients with primary MDS that was treated (until possible development of AML) only with transfusions or, in a small number of patients, low-dose oral chemotherapy or hematopoietic growth factors. The IPSS uses information about blood counts, cytogenetics, and percent marrow blasts to distinguish four prognostic groups, low, INT-1, INT-2, and high, with very different survival expectations.6 The system was qualitatively if not quantitatively verified in another center, that had not participated in development of the IPSS. It is fair to say that the IPSS system is likely to become the world-wide standard.

It has been shown that the principal reason that secondary AML has a worse prognosis than primary AML is its association with chromosome abnormalities such as deletions or monosomies involving chromosomes 5 and/or 7 often with other, complex changes.7 That is, once cytogenetics are accounted for there is only a relatively small difference in outcome between primary and secondary AML. Given the above it is reasonable to ask if the IPSS, which uses cytogenetic information, would effectively stratify patients with secondary MDS. To address this issue, we examined data from 78 patients with secondary MDS (RA, RAS, RAEB, RAEB-t, or CMML with WBC count <12,000/µL) treated at M.D. Anderson before 1991, the year when we began to systematically give patients with refractory anemia with excess blasts (RAEB) or RAEB-in transformation (RAEB-t) AML-type chemotherapy. The 78 patients were in general given hematopoietic growth factors (HGFs) ± low-dose ara-C (10-15 mg/m² per dose) or transfusions only, at least until development of AML. Table 1 analyzes survival in these 78 stratified by the IPSS, and compares survival in the 78 with survival in 217 patients with primary MDS also treated at M.D. Anderson before 1991 and given the same type of therapies as the secondary MDS patients. As expected given the association between secondary MDS and cytogenetic abnormalities, the secondary MDS patients are much more likely than primary MDS patients to be placed in the worse prognosis IPSS categories (especially IPSS high). There is some evidence that the IPSS effectively stratifies secondary MDS patients (Figure 1, log-rank p-value .08 with a very small number of low and INT-1 patients). There is nothing to support a difference in outcome between primary and secondary MDS patients within a given IPSS category. This is shown in Figure 2 for the INT-1 category. In addition to sample sizes, the reader must bear in mind that primary MDS patients at M.D. Anderson have lower survival probabilities than the primary MDS patients seen in hospitals contributing to the IPSS, although the reasons are unclear. Nonetheless, the M.D.
Anderson data suggest that the IPSS is applicable to patients with secondary MDS. It should be noted that I have dealt exclusively with survival rather than transformation to AML. This reflects the fact that 70% of patients with primary MDS die of complications of their disease without transformation to AML (55% even in the IPSS high category).^6^

Treatment of secondary MDS

Better prognosis

The quotes here indicate that this definition is inherently subjective; however, for purposes of this discussion I will use it to refer to the small percent of secondary patients whose median predicted survival is in excess of two years using the IPSS (e.g. low or INT-1 categories) assuming it has been validated, or it is reasonable to expect that it could be validated, at the hospital where the patient is being treated. The principal options for these patients are transfusions only, use of erythropoietin (EPO) ± granulocyte colony stimulating factor (G-CSF) or granulocyte-macrophage colony stimulating factor (GM-CSF), or use of other low intensity therapies (i.e. non AML-type chemotherapy) in the context of a clinical trial. An exception to the recommendation for use of low intensity therapies in these patients might be made for allogeneic transplant as discussed later. Regardless of the therapy chosen, several points about transfusions should be emphasized. First, several studies have shown that consistent use of the iron chelator desferrioxamine can remove tissue iron, lessen the likelihood of organ dam-

Table 1. Application of IPSS to secondary MDS.

<table>
<thead>
<tr>
<th>IPSS category</th>
<th>Number of patients with secondary MDS</th>
<th>Survival percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low 5 (6%) 29 (13%)</td>
<td>25th Primary 1.3*</td>
</tr>
<tr>
<td></td>
<td>INT-1 14 (18%) 89 (41%)</td>
<td>50th Primary 0.4</td>
</tr>
<tr>
<td></td>
<td>INT-2 30 (38%) 66 (30%)</td>
<td>75th Primary 0.3</td>
</tr>
<tr>
<td></td>
<td>High 29 (37%) 35 (16%)</td>
<td></td>
</tr>
</tbody>
</table>

*All units are in years.

Figure 1. Survival probability by IPSS score for 78 M.D. Anderson patients with secondary MDS. The "observed expected" column refers to the number of deaths compared to the number expected given the follow-up (Log-rank statistic, p-value = .08).

Figure 2. Survival probability for IPSS score INT-1 patients according to whether they had primary or secondary MDS. P-value = .638. Data for other IPSS categories are similar.
age, and prolong survival.8-10 It has been recommend-
ed that chelation therapy begin after cumulative transfu-
sion of 10-20 units of packed red cells.11 Second, the routine use of platelet transfusions below a fixed
level of 20,000/µL should be discouraged. Even in patients receiving chemotherapy for AML it has been
demonstrated that routine transfusions only at lower
levels are equally effective.12,13

At least 20 studies describing use of EPO in MDS
have appeared. Hellstrom et al used a meta-analysis to
summarize the results in 17 of these involving 205
patients.14 The pre-treatment prognosis of the
patients was not explicitly stated; however it seems
likely that a substantial number had IPSS scores of
low or INT-1 (e.g. 75% had < 5% marrow blasts)
although the vast majority had a hemoglobin < 10.5
g/dL or were transfusion-dependent pre-treatment.
At any rate it is not clear that IPSS score would be
predictive of response to EPO. Response, defined as
a stable hemoglobin without need for further trans-
fusion, or, in patients who were not transfusion-
dependent pre-treatment, a hemoglobin > 15 g/dL
was seen in 16% (95% CI 12-22%) with rates varying
between 0-44% in the various studies. Most of the
responses were seen within the first 8 weeks of ther-
apy. Flu symptoms were the most common side effect
but occurred in < 5% of the patients. The principal
predictors of response were FAB diagnosis (sidero-
blastic anemia vs RA or RAEB), serum EPO level (< 200
µg/kg/day and transfusion need (yes or no). Among
the 8 groups formed by the various permutations of
these parameters the lower boundary of the 95% con-
fidence limit for response was >20% in patients with
RA or RAEB (not RAS) who were not transfusion
dependent and whose serum EPO level was < 200.
Rose et al.'s paper15 lent further weight to the prog-
nostic value of diagnosis (RAS unfavorable) and
serum EPO level but not transfusion requirements,
although it is unclear if the Rose et al.'s patients’ pre-
treatment transfusion requirements were similar to
those in the meta-analysis. Given the data I would
recommend a three-month trial of EPO in RA or
RAEB patients with a serum EPO level <200 provid-
ed the patients fit in IPSS low or INT-1 categories and
have no need for platelet transfusions.

Another possible therapy for these patients is the
combination of G-CSF+EPO. Negrin et al.16 gave G-
CSF beginning at 1 µg/kg/day and increasing until the
neutrophil count was normal, or if normal initially,
twice the starting value. G-CSF was then continued
and EPO added at 300 µg/kg/day. Fifty-five patients
were treated, the majority of whom appear to have
been in IPSS categories low or INT-1, although 76% were
transfusion dependent. Using a definition of
response similar to that used in the EPO meta-
alysis,14 Negrin et al.16 reported a response rate of 25%
with 95% confidence interval overlapping those report-
ed for EPO in the meta-analysis. Although this would
suggest that there is little to distinguish EPO+G-CSF
from EPO, it is noteworthy that Negrin et al. reported
patients in whom response initially observed with the
combination subsequently disappeared when EPO
was continued by itself, only to be observed again with
re-addition of G-CSF. Second, it is not clear that the
Negrin et al patients were similar to those in the EPO
meta-analysis. It would be interesting to do a regres-
son analysis on the combined meta-analysis and
Negrin et al groups looking at treatment (EPO vs
EPO+G-CSF) as one of the potential predictors of
response. GM-CSF+EPO vs GM-CSF+placebo have
been compared in 66 patients (all with hemoglobin <
10 g, transfusion dependency, and RA, RAS, or RAEB)
stratified by baseline EPO level.17 45 patients were ran-
domized to 12 weeks of EPO (150 µ/kg 3 x weekly)+GM-CSF
(0.3-1.0 µg/kg daily to maintain neu-

trophil count ≥ 1500) and 21 to GM-CSF alone.
Results suggested that hemoglobin values were less
likely to fall in the GM+EPO groups and that trans-
fusion requirements were decreased in the GM+EPO
patients with low EPO levels.

Other low-intensity options for better-prognosis
patients are 5-azacytidine and amifostine. The CAL-
GB has conducted two trials of the former.18 CR (as
in AML) rates of 10-15% have been reported with
improvement in blood counts reported in another
25-30%. The CALGB is accruing patients into a ran-
domized trial comparing subcutaneous 5-azacytidine
with observation. Use of amifostine in MDS was first
reported by List et al.19 The great majority of patients
appear to have had IPSS scores of low or INT-1. 9 of
10 patients evaluable for hematologic response had
improvement in blood counts; specifically 6 patients
had a >50% decrease in red cell requirements while
platelet count increased (16000 to 110,000/µL) in 4
of 7 patients with thrombocytopenia. Obviously even the
90% confidence limits about these rates would be
very wide. Hence before recommending amifostine
for routine use it appears important to obtain more
data in the context of clinical trials, several of which
are in progress.

At M.D. Anderson about 20% of patients with sec-
ondary MDS present with marrow cellularity ≤ 20%.
In the subset of these patients with better prognoses
a trial of antithymocyte globulin (ATG) ± cyclosporin
might be worthwhile, given the success of these reg-
imens in patients with aplastic anemia20 and the pos-
sibility of overlap between aplastic anemia and RA or
RAS. At the 1996 meeting of the American Society of
Hematology Moldrem et al. reported a CR (as in
AML) rate of 18% (95% CI 5-40%), and a PR (≥ 50% recovery of ≥ 1 lineage) rate of 23% (95% CI 8-43%) in 22 patients of whom 19 had RA or RAS and hence
were likely to be in the low or INT-1 categories of the
IPSS.21 Of note, the marrow cellularity of the
patients was 30-100%. This is another treatment
that, given the relative lack of data, needs further eval-
vation in formal clinical trials.

Low intensity therapies that would be difficult to recommend are G-CSF or GM-CSF, and low-dose cytosine arabinoside (ara-C). Although either CSF is virtually certain to raise the neutrophil count, neither has been reported in a manuscript to improve parameters such as infection rate or survival, although two large multicenter drug company-sponsored randomized placebo-controlled trials (1 involving GM-, the other G-CSF) were initiated over 5 years ago. Indeed Greenberg et al noted that RAEB patients had shorter survival when given G-CSF rather than placebo. This may have reflected the worse prognosis of the G-CSF treated patients although no covariate-adjusted survival analysis was presented. After a meta-analysis of outcome with low-dose ara-C (LDAC), Cheson et al. reported a CR rate of 16% (95% CI 11-23%), finding little evidence that achieving a CR exerted a substantial effect on survival and concluding that until appropriate indications can be identified LDAC should not be routinely used in clinical practice. The ECOG and SWOG randomized 140 patients to receive LDAC (10 mg/m² Q 12h for 21 days) or supportive care only and found no difference in survival between the two groups. Furthermore, LDAC is clearly myelosuppressive, and thus its classification as a low intensity therapy is debatable.

Worse prognosis

The majority of patients with secondary MDS would be expected to be dead within two years, e.g. have IPSS scores of INT-2 or high. Obviously the therapeutic options in these patients might be expected to differ from those in better prognosis patients. Specifically, higher intensity, hence more risk-laden, therapies, in particular AML-type chemotherapy and allogeneic transplantation, would be higher on a priority list. However, two cautions need to be expressed. First, it is not clear that these therapies improve survival compared to the therapies discussed in the previous section, except perhaps in a subset of patients, as discussed below. Second, there are clearly patients with worse prognosis secondary MDS who because they are old, have a poor performance status, or abnormal organ function are not candidates for higher intensity therapies and might benefit from some of the previously discussed lower intensity therapies.

The rationale for use of AML-type chemotherapy in secondary MDS is essentially the rationale for the use of the same in secondary AML. In fact, it has been demonstrated that after accounting for covariates such as cytogenetics, length of abnormal blood counts, age, and performance status results of AML-type chemotherapy appear independent of morphologic diagnosis (AML, RAEB-t, or RAEB), i.e. it is these other factors, not morphology, that determine response. Hence, reasons for not administering AML-type chemotherapy to patients with MDS and IPSS scores of INT-2 or high might include cytogenetics, age etc., but not morphologic diagnosis per se. Of course, because patients with secondary MDS usually have cytogenetic abnormalities that are associated with poor response to standard AML therapy, it is difficult to argue for use of such therapy in secondary MDS, just as it is in secondary AML. However, given the natural history of secondary MDS in most patients, the likelihood that, by analogy to AML and other cancers, the treatment which is most likely to extend survival is that which eliminates all evidence of disease and restores normal hematopoiesis (i.e. a CR), it appears reasonable to offer AML-type therapy to patients with secondary MDS and unfavorable prognoses in the absence of treatment, provided the AML-type therapy is investigational and conducted within the context of a clinical trial. An exception to this guideline might be made if the patient presented with a normal karyotype (and an IPSS score of INT-2 or high). It has been reported that perhaps up to 40% of patients under age 60 with a normal karyotype can expect a CR lasting ≥ 2 years following administration of currently available AML-type chemotherapy, particularly if high-dose ara-C based. Whether these results would obtain in secondary MDS patients with a normal karyotype is debatable and probably could be determined only after a lengthy trial given the relative rarity of a normal karyotype in secondary MDS.

As noted above however, the great majority of secondary MDS patients who are candidates for AML-type therapy should receive newer, investigational agents. Three such agents are deoxyazacytidine (DAC), topotecan, and all-trans retinoic acid (ATRA) combined with chemotherapy. DAC is a pyrimidine analogue that is of interest because of its ability to inhibit DNA methylation and hence perhaps promote differentiation. Wijermans et al reported on its use in 27 patients with MDS, the majority of whom appear to have been in IPSS categories INT-2 or high. CRs occurred in 8 patients (95% CI 13-50%) including one with a t(8;21), unlikely to occur in secondary MDS. Indeed the CR rate in patients with prognostically unfavorable karyotypes (as defined in AML patients given standard chemotherapy) was 2/14 (95% CI 2-43% vs 6/13 (95% CI 19-75%) in patients with other karyotypes. Median CR duration was 40 weeks and median survival less than one year, i.e. probably no different than the natural history of the untreated diseases. DAC invariably produced 3-4 weeks severe pancytopenia, hence its classification as a higher intensity therapy and raising a question as to the role of methylation vs cytotoxicity in its mechanism of action. The observation that the same relation between cytogenetics and response was seen as with standard drugs suggests that DAC qualitatively resembles those drugs, although it might profitably be combined with them.

Topotecan interacts with the enzyme topoisomerase I, leading to cell death. Beran et al reported
on its use at a dose of 2 mg/m² daily x 5 days in 25 patients with CMML,12 with RAEB and 10 with RAEB-t.30 Among patients who had received no chemotherapy for their disease, CR rates were 6/16 (95% CI 15-65%) for CMML, and 5/16 for RAEB or RAEB-t. Among previously treated patients the CR rate was 1/9 (95% CI 0-50%) for CMML and 1/6 (95% CI 0-64%) for RAEB or RAEB-t. Although the seemingly poor outcome in previously treated patients suggests that topotecan is qualitatively similar to more standard drugs, the CR rate in patients with a normal karyotype was 3/15 vs 9/28 in patients with abnormal karyotypes (5/15 in those with abnormalities of chromosomes 5 and/or 7). This suggests that topotecan might be a useful drug particularly in patients with cytogenetic abnormalities associated with poor response to more standard therapies. Topotecan (1.25 mg/m² daily days 1-5 CI) has subsequently been combined with ara-C (1 g/m² daily days 1-5).31 Again the response rate appears similarly high in patients with a normal karyotype and patients with abnormalities of chromosomes 5 and/or 7. This suggests that topotecan might be a useful drug particularly in patients with cytogenetic abnormalities associated with poor response to more standard therapies.

Table 2. CR rates with topotecan-containing chemotherapy by karyotype.

<table>
<thead>
<tr>
<th>Karyotype</th>
<th>Pts</th>
<th>CR</th>
<th>Pts</th>
<th>CR</th>
<th>Pts</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal karyotype</td>
<td>15</td>
<td>3</td>
<td>19</td>
<td>12</td>
<td>34</td>
<td>15 (44%)*</td>
</tr>
<tr>
<td>Chromosome 5 and/or 7</td>
<td>15</td>
<td>5</td>
<td>17</td>
<td>12</td>
<td>32</td>
<td>17 (53%)*</td>
</tr>
</tbody>
</table>

*95% confidence limit for the difference [-.15,.24].

Allogeneic marrow transplant (allo-t) is another option for patients with secondary MDS. As with chemotherapy, results are more dependent on the patients transplanted than on the regimens used (e.g. busulfan (BU) + cyclophosphamide (CY) + total body irradiation (TBI) vs CY+TBI,33 or BU-CY vs TBI-containing regimens)32 and also as with chemotherapy, once ≥3 years have elapsed from transplant failure is unlikely.36 Hence 3-year DFS rates are of interest. Several groups have reported an inverse relation between blast percent and DFS following allo-t.36-37 Thus patients with RA may have DFS rates of 60% vs ≤30% for patients with RAEB or RAEB-t. Within the RA subset shorter disease duration (relative risk (RR) 1.13/year), younger age (RR 1.52/decade), higher neutrophil count and higher hematocrit are independent predictors of survival.38 For example, patients treated in Seattle within one year of diagnosis (n = 40) had a 3-year actuarial survival rate of 65% vs 30% for patients (n = 10) receiving transplants ≥3 years after diagnosis. These data have led to the recommendation that allo-t be done early in the course of MDS. This recommendation must of course be weighed against the natural history of the disease, which of course is likely to be most favorable in the very patients who do best with allo-t, i.e. younger patients without excess blasts. In this context, it will be of interest to determine if duration of disease is an important predictor of the natural history of MDS and to determine the probability of long-term DFS following allo-t in the low, INT-1, INT-2, and high risk categories of the IPSS. This type of information would allow more informed decisions about the advisability of transplant.

Given the association of secondary MDS with cytogenetic abnormalities that are prognostically unfavorable in patients given standard AML-type chemotherapy it is of interest to determine the prognostic effect of cytogenetics in MDS patients given an allo-t as well as to examine the allo-t results in secondary MDS. With regard to the latter Anderson et al. reported a 3-year actuarial DFS rate of 25%16 and O’Donnell et al. a 2-year actuarial survival rate of 25%.35 However, the number of patients (8 in each series) results in exceptionally wide 95% confidence limits, e.g. 1-62% in the O’Donnell et al. series, and in general there is insufficient data to form even limited conclusions about allo-t in secondary MDS per se. The Seattle investigators found that patients with a normal karyotype had better DFS and survival than patients with abnormal karyotypes (relative risks .435 and .335 respectively following multivariate analysis).34 While other series have not been able to
demonstrate an effect of cytogenetics, the number of patients has been small. Perhaps relevant to this issue is the finding that in AML transplanted in first remission the effect of cytogenetics is similar to that seen in AML treated exclusively with chemotherapy. Furthermore, Sutton et al. found that MDS patients who had received, and largely failed, AML-type therapy prior to allo-t had worse outcomes than patients who had not, again suggesting the qualitative similarity of chemotherapy and allo-t in MDS. In a recent letter Anderlini et al. noted that the 3 year DFS probability for 84 patients with CMML, RAEB, or RAEB-t age < 60 given AML-type chemotherapy at M.D. Anderson was 24 ± 5% with a median censoring time of 1.3 years. These results were essentially similar to those reported by Anderson et al. in patients with similar diagnoses who received an allo-t (median censoring time of 1.3 years). Allowing for possible differences in patient selection and characteristics, Anderlini et al. emphasized that patients under age 60 with RAEB, RAEB-t, or CMML particularly those with a normal karyotype should not be considered to necessarily benefit more from allo-t than AML-type chemotherapy. The same would apply to an allo-t from a matched unrelated donor especially as results from this procedure appear worse than those following allo-t using a matched sibling donor.

To a large extent the argument over whether allo-t or AML-type chemotherapy is superior for poor prognosis, e.g. secondary MDS, misses the point that neither therapy is currently satisfactory for these patients. Hence the focus should be on development of new chemotherapy and transplant strategies. Some examples of the former were discussed above. Examples of investigational transplant regimens include cyclosporin or FK507 withdrawal to stimulate the graft-vs-leukemia effect, and use of less ablative regimens followed by infusions of peripheral blood stem cells rather than bone marrow. Such regimens may improve DFS by decreasing death in remission rates and thus make it possible to transplant patients over age 70 or with poor performance status in whom the primary obstacle to allo-t has been the fear of toxicity.

Disclosure
Conflict of interest: none.
Redundant publications: the author has written review on MDS before. These were also invited articles. In contrast to those papers, which were written earlier, this paper contains information about the IPSS and therapeutic options such as topotecan, amifostine etc.

References

12. GIMEMA group (Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto): Interim report from the platelet transfusion trigger trial (PTTT): a prospective controlled study on bleeding risk in acute myeloblastic leukemia (AML) patients randomized to be transfused at ≤ 10 versus ≤ 20 x 10^9/L platelets [abstract]. Blood 1996; 88(suppl 1):443a.
20. Rosenfeld SJ, Kimball J, Vining D, Young NS. Intensive immunosuppression with antithymocyte globulin and

