Key words

Chronic refractory ITP, IFN-α2b, immune system

Correspondence

Dr. Nicola Vianelli, Istituto di Ematologia e Oncologia Medica “L. & A. Seràgnoli”. Policlinico S. Orsola, via Masantoni 9, 40138 Bologna, Italy.

References

Long-term disappearance of previous chromosomal abnormalities in myelodysplastic syndromes treated with low dose cytosine arabinoside and granulocyte/macrophage-colony stimulating factor

José Luis Sastre, Carlos Ulubarrena, María Bustillo, Mar Suárez-Gago, María Socorro García-Torremocha, María Obdulia Vázquez

Servicio de Hematología y Hemoterapia, Cristal Piñor Hospital Ourense, Spain

Most therapies for elderly patients with myelodysplastic syndromes offer few short responses and little improvement in survival. We describe two patients who, after several cycles of low dose cytosine arabinoside and GM-CSF, achieved and maintained complete remission and became transfusion independent. Previous chromosomal abnormalities also disappeared and karyotype remains normal.

No uniformly accepted treatment is available for elderly patients with myelodysplastic syndromes (MDS). We present two MDS patients treated with combined low-dose ara-C and GM-CSF who achieved a complete (CR) clinical, hematological and cytogenetic response.

Case #1. A 71-year-old woman diagnosed in 1992 as having refractory anemia was referred in 1995 because of severe cytopenias and elevated transfusional requirements. Bone marrow (BM) aspirate was hypercellular with trilineal dysplasia and 12% myeloblasts. Cytogenetics: 46,XX (45% metaphases)/46, XX, t(5;13)(q13; q14) (35%)/47,XX,+8 (20%). She started low-dose ara-C (10 mg/m²/d) and GM-CSF (150 mg/d), days 1 to 14, every month. After the fourth cycle she did not need further transfusions. Data in August 1996: normal karyotype; less than 1% of blasts in BM; WBC count, 3.3×10⁹/L; hemoglobin (Hb), 143 g/L; 124×10⁹ platelets/L. Side-effects were mild (except for flu-like syndrome related to GM-CSF), thus allowing us to administer up to 20 cycles of this protocol. The patient remains stable without complications 24 months after the onset of treatment (Figure 1).

![Figure 1. Case #1.](image-url)
Case #2. A 68-year-old woman was diagnosed as having refractory anemia with ring sideroblasts. Folic acid, vitamin B6 and danazol did not prevent a progressive worsening in blood counts. By August 1996, she needed weekly transfusions and her neutrophil count was $0.7 \times 10^9/L$. BM aspirate revealed severe trilineal dysplasia, 4% myeloblasts, and occasional Auer rods; karyotype: 46, XX, del(5)(q13; q33). At this moment the protocol was initiated. Data after the fifth cycle: normal karyotype; less than 1% myeloblasts in BM; WBC $12.3 \times 10^9/L$ (76% neutrophils); Hb 134 g/L without need for further transfusions. By the 17th month of treatment she maintains a complete response (Figure 2).

The outlook of MDS patients with excess of blasts, pancytopenia and chromosomal abnormalities is ominous. Therapy in older individuals usually aims at merely prolonging survival. Intensive chemotherapy attains variable CR rates of short duration with important morbidity. For these reasons milder therapies have been tried: results with low-dose ara-C are similar to intensive protocols, sharing their lack of effect on prolongation of survival; GM-CSF increases neutrophil counts and decreases infection rate in these patients. Wadhan-Raj reported the suppression of the myelodysplastic clone and stimulation of polyclonal hematopoiesis after GM-CSF. In a EORTC series of 82 patients given ara-C and GM-CSF, response rate was significant enough (63%) to suggest a role for this combination.

We report two cases whose originality lies in the fact that previous chromosomal abnormalities disappeared under prolonged therapy. Up till now, it is not clear how many cycles should be delivered; besides, most available data come from assays with few courses. In contrast, our patients are kept indefinitely under treatment, provided that side effects are not unbearable or disease progresses overtly. The uncertainty about the relationship between cytogenetic response and cure sustains our long-term policy.

To sum up, we agree with other investigators that ara-C and GM-CSF therapy is useful in selected MDS patients. The dosage and minimum number of cycles remain unclear.

Key words
Myelodysplastic syndromes, cytosine arabinoside, granulocyte/macrophage-colony stimulating factor, complete remission

Correspondence
Dr. José-Luis Sastre Moral, Cristal Piñor Hospital, Rúa Ramón Puga 54, 32005 Ourense, Spain. Phone: international +34-988-385629 and +34-988-385835 • Fax: international +34-988-385551.

References
8. Sastre JL, Ulibarrena C, Rodríguez MM, García Torre...
Alloimmunization against human platelet antigen 2 (HPA2) in a series of multi-transfused β-thalassemia patients

PIER LUIGI TAZZARI, FRANCESCA RICCI, CRISTINA TASSI, ANDREA BONTADINI, FIORENZA FRIET, ROBERTO CONTE

Servizio di Immunoematologia e Trasfusionale, Policlinico S. Orsola-Malpighi, Bologna, Italy

In our study we investigated the presence of anti-human platelet antigen (HPA) alloantibodies in a series of 10 β-thalassemia major patients submitted for more than 10 years to periodic blood transfusions (every 2-3 weeks). We found that 2 out of the 10 patients developed anti-HPA2a+HPA1b and anti-HPA2b antibodies. Our results highlight that HPA alloimmunization in multi-transfused patients is a real possibility.

Patients affected by β-thalassemia major are usually submitted to many transfusions of packed red blood cells during their life. Multitransfused patients are exposed to different immunogens due to the presence of leukocytes and platelets in packed red blood cells. Antibodies raised against the latter components are responsible for some of the febrile non-hemolytic transfusions reactions (FNHTR) and filtered packed red cells are then needed to avoid this kind of reactions. Little is known about possible alloimmunization against human platelet antigens (HPA); this is more difficult to study and to characterize than HLA alloimmunization. In this context we analyzed our series of β-thalassemia patients to find alloimmunization against red blood cells, leukocyte and platelets.

Ten patients affected by β-thalassemia major (clinical characteristics summarized in Table 1) were submitted to periodic tests for the presence of alloantibodies. Tests were also performed in the case of transfusion reactions.

Antibodies against red cell antigens were detected by standard indirect tests using rabbit anti-human immunoglobulin antisera. Antibodies against HLA were analyzed by a standard cytotoxicity test on HLA-typed donors. The search for alloantibodies against HPA was performed by a standard indirect immunofluorescence test on random and HPA-typed donor platelets. The samples were also run on a monoclonal antibody-immobilized platelet antigen (MAIPA) test to define the specificity of the recognized antigen. Patients found positive for anti-HPA antibodies were genotyped for HPA-1, -2, -3, -5 genes with SSP-PCR.

Clinical records (Table 1) showed that 6 patients had suffered from FNHTR, indicating a possible alloimmunization against platelets and/or leukocytes. Two patients showed alloimmunization against red blood cell (one anti-Kell and the other anti-Kpα), while 5 out of 10 had HLA antibodies with a very wide specificity (>80% of positive donors). One patient (#4) had anti-HLA-B35+51 antibodies.

Concerning HPA alloantibodies, patient #1 had HPA2a alloantibodies and patient #2 HPA2a+HPA1b alloantibodies. It should be underlined that HLA antibodies with wide reactivity were found in sera from both patients, and patient #1 had also anti-Kell antibodies. HPA gene typing showed that patient n.1 (anti-HPA2b) was HPA1a/a, HPA2a/a, HPA3b/b, HPA5a/b. Patient #2 (anti-HPA2a) showed the following typing: HPA1a/a, HPA2b/b, HPA3a/a, HPA5a/a.

We analyzed sera from 10 multi-transfused patients suffering from β-thalassemia major, looking for both HLA and HPA specificities. HLA antibodies were found in 6 out of the 10 patients. Our investigation also showed that HPA alloimmunization is a real possibility since two patients developed HPA antibodies (anti HPA2b and anti HPA2a+HPA1b).

In multi-transfused patients alloimmunization is usually regarded as strictly related to the presence of HLA alloantibodies, since these are responsible for most of the FNHTRs. In addition HPA alloantibodies may be implicated. A retrospective analysis showed that patient #2 also suffered from FNHTR also when receiving blood from HLA-matched donors, positive for the HPA2a antigen. These results suggest that HPA may have been responsible for the FNHTRs.

Table 1. Characteristics of β-thalassemia patients.

<table>
<thead>
<tr>
<th>N. Pts. Age/Sex</th>
<th>No. of transfused RBC units (non-filtered U until 1990; filtered U beginning from 1991)</th>
<th>Transfusion reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C.M. 26/M</td>
<td>464 215 chills-hyperthermia</td>
<td></td>
</tr>
<tr>
<td>2 C.A. 24/F</td>
<td>568 160 chills-hyperthermia</td>
<td></td>
</tr>
<tr>
<td>3 D.F.M. 34/F</td>
<td>760 212 chills-hyperthermia</td>
<td></td>
</tr>
<tr>
<td>4 D.L 21/F</td>
<td>423 202 chills-hyperthermia</td>
<td></td>
</tr>
<tr>
<td>5 F.L 31/M</td>
<td>804 240 chills-hyperthermia</td>
<td></td>
</tr>
<tr>
<td>6 F.A. 23/F</td>
<td>420 184 none</td>
<td></td>
</tr>
<tr>
<td>7 F.M. 19/M</td>
<td>260 162 none</td>
<td></td>
</tr>
<tr>
<td>8 I.I. 27/F</td>
<td>740 187 chills-hyperthermia</td>
<td></td>
</tr>
<tr>
<td>9 R.A. 21/F</td>
<td>324 164 none</td>
<td></td>
</tr>
<tr>
<td>10 S.F 26/M</td>
<td>580 215 none</td>
<td></td>
</tr>
</tbody>
</table>

M= male; F=female; U=units.