Vancomycin-resistant Enterococcus faecium infection in three children given allogeneic hematopoietic stem cell transplantation: clinical and microbiological features

EDOARDO CARRETTO, DANIELA BARBARINI, FRANCO LOCATELLI, EUGENIA GIRALDI, NICOLETTA PELLEGRINI, LORENZA PERVERSI, PAOLO GROSSI, PIETRO MARONE, FEDERICO BONETTI

*Laboratorio di Batteriologia e Micologia, Laboratori Sperimentali di Ricerca, Area Infettivologica, Dipartimento di Pediatria, *Clinica Malattie Infettive, Università di Pavia - IRCCS Policlinico San Matteo, Pavia, Italy

ABSTRACT

Background and Objectives. The emergence of vancomycin-resistant enterococci (VRE) as nosocomial pathogens is a major problem in the US; in Europe, VRE nosocomial infections are uncommon and only rarely have been reported in Pediatric or Neonatal Units. The aim of this study is to report on the clinical and microbiological features of VRE infections in 3 children given hematopoietic stem cell transplantation (HSCT).

Patients and methods. Five episodes of vancomycin-resistant Enterococcus faecium (VREF) infection were diagnosed in 3 children given an allogeneic HSCT. Molecular methods, such as random amplification of polymorphic DNA (RAPD) fingerprinting and automated ribotyping, were used in order to define the circulation of strains.

Results. All the isolates were resistant to all commercially available agents and showed the VanA genotypic profile. All children were successfully treated with the combination of quinupristin/dalfopristin (QD) plus teicoplanin (TEC), although treatment was not sufficient to eradicate the micro-organism promptly from the gastrointestinal tract. All our children are still alive. After the first isolation of VRE, a surveillance protocol was started and we documented that the rate of colonization in children and their mothers was less than 1.5%. The RAPD method demonstrated the possible nosocomial transmission of one strain.

Interpretation and Conclusions. Our experience demonstrates that VRE infection is a life-threatening complication in children given HSCT. Prompt diagnosis of this infection and its treatment with the combination of QD and TEC can successfully manage this severe infection in profoundly immunocompromised patients.

© 2000, Ferrata Storti Foundation

Keywords: vancomycin-resistant enterococci, bone marrow transplantation, teicoplanin, quinupristin/dalfopristin, RAPD, automated ribotyping

Correspondence: Edoardo Carretto M.D., Laboratorio di Batteriologia e Micologia, Laboratori Sperimentali di Ricerca, Area Infettivologica, IRCCS Policlinico San Matteo, viale Taramelli 5, 27100 Pavia, Italy. Phone: international +39-0382-502702 - Fax: international +39-0382-502282 - E-mail: e.carretto@smatteo.pv.it

reported from US hospitals; to date, almost 15% of enterococci causing nosocomial infections are vancomycin-resistant.10 In Europe, VRE nosocomial infections are rare11 and, to our knowledge, only rarely have outbreaks of VRE infections been reported in Pediatric or Neonatal Units. We report our experience in a Pediatric HSCT unit with five episodes of vancomycin-resistant Enterococcus faecium (VREF) infections occurring in 3 children given an allograft. The children were successfully treated with the combination of quinupristin/dalfopristin (QD) and teicoplanin (TEC).

Design and Methods
The patient’s clinical characteristics are shown in Table 1.

Patient #1
An 18-month old male with hemophagocytic lymphohistiocytosis (HLH) developed two sequential episodes of VREF septicemia after HSCT from an unrelated donor. On day +60 following HSCT, after the marrow had been successfully engrafted (WBC = 3.5×10^9/L; Hb = 10.9 g/dL; Plt = 28×10^9/L), the patient, while being treated with cyclosporine and methylprednisolone for cutaneous grade II acute GvHD, developed fever, abdominal pain and hemorrhagic enteritis. VREF was isolated from all blood cultures performed. The central venous line was removed and the patient was treated with QD (7.5 mg/kg every 8 hours) for 21 days and with TEC (10 mg/kg/day) for 21 days. This treatment was well tolerated, with the exception of mild nausea, and led to resolution of clinical symptoms; blood cultures became negative.

Twelve days after antibiotic discontinuation, the child re-experienced fever and bacteremia in the absence of any other clinical manifestations observed during the first episode. VREF was isolated from all blood cultures performed. The central venous line was removed and the patient was treated with QD (7.5 mg/kg every 8 hours) for 21 days and with TEC (10 mg/kg/day) for 21 days. This treatment was well tolerated, with the exception of mild nausea, and led to resolution of clinical symptoms; blood cultures became negative.

Patient #2
A 20-month old male with acute lymphoblastic leukemia received an unrelated cord blood transplant. A few days after HSCT, a strain of VREF was isolated from a rectal swab. Four months later, after having been discharged from the hospital in good hematologic condition with stable engraftment (WBC = 7.3×10^9/L; Hb = 9 g/dL; Plt = 37×10^9/L), she developed a spiking fever (over 39°C), associated with abdominal pain, vomiting and diarrhea. Physical examination revealed a tense abdominal wall and X-ray showed a picture of ileus with intestinal pneumatosis, localized to the distal small bowel and proximal colon. VREF was isolated from two of the three blood cultures performed and from feces. Supportive management included abdominal decompression with rectal and nasogastric aspiration; the central venous line was removed. Treatment with QD (7.5 mg/kg every 8 hours) for 22 days and with TEC (10 mg/kg/die) for 12 days led to resolution of clinical symptoms and disappearance of the organism from blood and stool. VREF was again isolated from a rectal swab 10 days after completing treatment. The child was then in a good clinical state and antibiotic treatment was withheld; at present, she is in complete remission of the primary disease 18 months after transplant. VREF was no longer isolated from surveillance cultures.

Patient #3
A 25-month old boy with acute myelogenous leukemia received a bone marrow allograft from an unrelated donor. One month after HSCT, VREF was simultaneously isolated from rectal and conjunctival swabs and, a few days later, while the child was on antibiotic treatment with TEC and imipenem-cilastatine, from blood cul-

<table>
<thead>
<tr>
<th>Table 1. Patient characteristics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Age at HSCT (months)</td>
</tr>
<tr>
<td>Diagnosis</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Conditioning regimen</td>
</tr>
<tr>
<td>Source of stem cells</td>
</tr>
<tr>
<td>Type of donor</td>
</tr>
<tr>
<td>GvHD prophylaxis</td>
</tr>
<tr>
<td>Nr. VRE isolates/sites</td>
</tr>
</tbody>
</table>

HSCT = hematopoietic stem cell transplantation; HLH = hemophagocytic lymphohistiocytosis; ALL = acute lymphoblastic leukemia; AML = acute myeloid leukemia; TBI = total body irradiation; TT = thiotepa; CY = cyclophosphamide; GvHD = graft-versus-host disease; Cs-A = cyclosporin-A; MTX = methotrexate; PDN = prednisone; ALG = antilymphocyte globulin.
tures. At that time, the patient had already engrafted (WBC = 11.5 × 10^9/L; Hb = 9.5 g/dL; Plt = 14 × 10^9/L) and was receiving cyclosporine and methylprednisolone for grade II acute GvHD. The infection was characterized by fever, abdominal pain and hemorrhagic enteritis. The boy was treated with QD (7.5 mg/kg every 8 hours) for 40 days and with TEC (10 mg/kg/die) for 21 days, with resolution of clinical symptoms and clearance of the organism from blood and stool. The central venous line was removed. Conjunctivitis was mild and was treated with topical application of ofloxacin.

Fifty days after complete resolution of the first episode, the child had recurrence of fever, with abdominal pain and isolation of *E. faecium* from stools. He was again treated with QD (7.5 mg/kg every 8 hours) for 20 days, with resolution of clinical symptoms and stool cultures becoming negative. The child was discharged from the hospital at the end of treatment. During follow-up, VREF was again isolated from feces two months later. He did not receive antibiotic treatment and no further isolation of VREF was obtained. Fifteen months after HSCT he is in good clinical condition and complete remission of the primary disease.

Bacterial strains

Nineteen enterococcal strains were isolated from patients (see Table 2). All the isolates were identified as enterococci by phenotypic methods. Identification was also confirmed using the automated RiboPrinter® microbial characterization system (Qualicon, Wilmington, DE, USA).

Susceptibility tests were performed on all enterococcal strains using the disk diffusion method on Mueller-Hinton agar with a 24-hour incubation at 35°C; the results were expressed as susceptible, intermediate or resistant according to the criteria of the National Committee for Clinical Laboratory Standards (NCCLS) for the modified Kirby-Bauer method. We also evaluated the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) for vancomycin, teicoplanin, quinupristin/dalfopristin, ampicillin, penicillin and gentamicin, using a broth macrodilution method according to the NCCLS criteria. On three representative strains for any patient (i.e. strains isolated from different sites) we evaluated the type of genotypic resistance and their similarity using random amplification of polymorphic DNA (RAPD), fingerprinting and automated ribotyping. The tested strains are shown in Table 2.

Genotypic resistance

We performed amplification of VREF DNA through polymerase chain reaction (PCR) with selected primers. Total enterococcal DNA was extracted using standard procedures (lytic agents, extraction with phenol-chloroform and precipitation with ethanol) and then amplified as described by Dutka-Malen et al.11

RAPD fingerprinting

We used six purified primers, ranging in size from 10 to 25 bases, with different nucleotide proportions (G+C content), used in previous experiments12 and supplied by Life Technologies, Italy.

Amplification reactions were performed in a 50 µL volume containing PCR buffer, 1.5 µM MgCl2, 200 µM of each dNTP, 1 µM of each single primer, 20 ng of enterococcal DNA and 2.5 U of Stoffel Fragment Taq polymerase (Perkin Elmer Europe). After a first step at 94°C for 2 min samples were cycled 50 times through the following temperature profile: 94°C for 5 sec., 36°C for 30 sec., 72°C for 1 min. The samples were finally incubated at 72°C and at 60°C (10 minutes per step). Each PCR was repeated at least three times in independent experiments. Ten microliters of each amplification reaction were then loaded onto 3% (w/v) agarose gel with TAE buffer containing 0.5 µg/mL (w/v) ethidium bromide. RAPD markers were scored as present or absent and coded as two-state characters in order to calculate a matrix based on the Dice similarity index.13

Automated ribotyping

In order to confirm the strain identification and to type isolates, we used the automated RiboPrinter®. The obtained fingerprints are normalized digital representations of the genetic data of the isolated organism. The process
has been previously described in detail.16,18 The standard process performs restriction enzyme digestion with \textit{EcoRI} and hybridization with a rRNA gene probe (\textit{E. coli} region encoding the rRNA 16S-23S-5S genes and the spacer region including Glu-tRNA). In order to enhance the discriminatory power of the method, we performed further digestion analysis using other restriction enzymes (\textit{PstI}, \textit{BamHI} and \textit{AseI}).

Results

Susceptibility tests showed resistance of all strains tested to macrolides, floroquinolones, ampicillin, amoxicillin/clavulanate, glycopeptides, aminoglycosides, cotrimoxazole and carbapenems. Only for chloramphenicol was a profile of intermediate sensitivity was obtained. All strains appeared to be susceptible to quinupristin/dalfopristin. The results of MIC-MBC performed on our isolates are shown in Table 2. All strains showed the VanA profile of high resistance to glycopeptides, which was confirmed by detection in all strains of the VanA genotypic profile (Figure 1). Two of the 6 different primers chosen for RAPD analysis (whose 5’-3’ sequences are GGAGGGTGTT and AGGGAACGAG) allowed the most reproducible patterns to be obtained. RAPD fingerprinting produced by the selected primers are shown in Figure 2. Automated ribotyping with \textit{EcoRI} identified strains as \textit{Enterococcus faecium}. No differences were noted between the several digestion patterns obtained using a number of restriction enzymes (\textit{EcoRI}, \textit{PstI}, \textit{BamHI} and \textit{AseI}, Figure 3). After the first isolation of VRE, a surveillance protocol was started: in particular, rectal swabs were collected weekly from children and their mothers. The rate of colonization was less than 1.5%. The health-care workers were checked every six months and no case of colonization was found.

Discussion

Over the past decade, improvement of supportive care in hematology units has led to better prevention and more effective treatment of infections in neutropenic patients. Since introduction of oral antibacterial prophylaxis with quinolone derivatives, which are selectively active against Gram-negative organisms, Gram-positive cocci have become the dominant pathogens.6 In fact, about 50% of microbiologically documented infections are due to this type of pathogen. The policy of employing glycopeptide antibiotics (either vancomycin or teicoplanin) as empirical first-line antimicrobial treatment bears the risk of spreading resistance to these antibiotics among enterococci, thus increasing the potential danger represented by a wide clinical variety of

Haematologica vol. 85(11):November 2000
VRE. The source of these micro-organisms is usually considered to be endogenous and nosocomial transmission of VRE, possibly by means of fecal spread, has been described among pediatric patients. However, VRE infections have been reported in only small numbers of children, and only rarely has life-threatening infection due to VRE been described in these patients.

Our children had profound impairment of immune function; they were VRE stool carriers at the time of bacteremia and all had a prolonged stay in hospital prior to first culture positivity. They also had been treated with broad-spectrum cephalosporines for various infections in the past. All these factors increase the risk of developing VRE infections. In one patient, VRE was isolated from a conjunctival swab. Notably, this localization has not been previously described in literature. Transmission of the micro-organism via the hands of the patient can be hypothesized. In this case, the low pathogenicity of VRE was demonstrated by the rapid eradication of infection by means of topical therapy.

The optimal treatment for severe infections caused by these multiresistant organisms has yet to be determined and represents a major challenge for the clinician. The micro-organisms isolated in our patients were resistant to all commercially available antimicrobial agents; only chloramphenicol showed a profile of intermediate susceptibility. QD, an antibiotic not yet available in Italy, appears effective in vitro. Many studies have proposed various treatments for VRE infections, using for example the association vancomycin, penicillin and gentamicin, quinolones, chloramphenicol, and QD. New promising drugs under investigation include oxazolidinones and fluoroquinolones, but no exhaustive clinical trials are available. We decided to treat our patients with a combination of QD and teicoplanin, postulating a synergistic effect similar to that described for methicillin-resistant Staphylococcus aureus. In all cases, treatment was well tolerated. The only treatment-related adverse event we observed was mild nausea during drug infusion, none of the patients requiring discontinuation of therapy because of this symptom. Recently, two reports on patients who developed VRE infection after either autologous or allogeneic HSCT have been published. In the large study on patients given autologous transplant of peripheral blood progenitors, 10 out of 321 recipients developed bacteremia during the first 2 weeks after transplantation and one patient died of VRE endocarditis. By contrast, 17 out of 20 patients with VRE bacteremia reported in the study on both autologous and allogeneic HSCT recipients died, this suggesting that patients given an allograft seem to be exposed to an increased risk of VRE-related death. Moreover, an increased risk of graft failure was observed in this latter population. Despite the fact they received allogeneic HSCT from unrelated donors, all our children are still alive and none experienced graft failure. The success in the treatment of our patients may be attributed to the timely diagnosis of VREF infection (which can be confused with gastrointestinal GvHD in allograft recipients) and to the combined therapy with QD and TEC. Prompt removal of the central venous line, which is easily colonized by this micro-organism, may have contributed to the resolution of VREF bloodstream infection, as well. Since after treatment discontinuation VRE were isolated from surveillance cultures, it can be concluded that treatment was usually not sufficient to eradicate the micro-organism from the gastrointestinal tract. Nevertheless, in this high-risk population, prompt treatment of severe VRE infection with QD and TEC was highly successful and, although prolonged therapy was required in all cases, toxicity was minimal. Even though these data should be confirmed in a larger population, they suggest that the combination of QD and TEC can be effective for treatment of life-threatening VRE infection in immunocompromised children.

In our study RAPD typing showed that two different genotypes of VREF were involved. This could suggest a cross-infection between patients AL and PG; it is noteworthy that the two children were hospitalized during the same period. Patient BG was hospitalized six months later and

![Figure 3. Automated ribotyping obtained with PstI restriction enzyme (modified from the image generated by Riboprinter®).](image)
the RAPD fingerprinting of enterococci isolated from this patient is different from those obtained from the other two patients. RAPD typing of genomic DNA is easy to perform; however, this technique needs experimental calibration. Previous reports have emphasized that selected groups within species, such as VRE, may be groups with lower ribotyping discrimination. Our study confirms that, in the case of VRE, ribotyping is less discriminating than RAPD, even if using different restriction enzymes. In our experience, PstI, BamHI and Asel showed no great advantage in typing VRE over EcoRI.

Other experiments with different restriction enzymes are needed in order to evaluate the most discriminating enzyme for VRE.

Contributions and Acknowledgments
EC performed the molecular analysis experiments, was involved in the data analysis and wrote the paper. DB performed the molecular analysis experiments. FL co-ordinated the transplant procedures and wrote the paper. EG and NP were responsible for the management of the patients. LP performed the susceptibility tests on isolates. PG and PM contributed to the clinical and laboratory management of VRE infection. FB was responsible for the management of the patients and wrote the paper.

Funding
This work was partly supported by grants from Associazione Italiana Ricerca sul Cancro (AIRC) and IRCCS Policlinico San Matteo, Pavia to Franco Locatelli and from IRCCS Policlinico San Matteo, Pavia (Ricerca Corrente 1998) to Piero Marone and Ricerca finalizzata IRCCS L. Spallanzani ICS 120.5 RF 98.88 to Paolo Grossi. We thank Edward Haeusler for his expert assistance in manuscript preparation. We would also like to thank Dott. Piero Zucchi for having provided us the quinupristin/dalfopristin.

Disclosures
Conflict of interest: none.
Reducant publications: no overlapping with previously published papers.

Manuscript processing
Manuscript received July 28, 2000; accepted September 22, 2000.

Potential implications for clinical practice
• Our report confirms the efficacy of QD plus teicoplanin in treating VRE infections in children. Once VRE is isolated, a surveillance protocol, based on molecular techniques, is needed.

References
1. Locatelli F, Burgio GR. Transplant of hematopoietic stem cells in childhood: where we are and where we are going. Haematologica 1998; 83:550-63.

VREF bacteremia in children given allogeneic HSCT