anemia, and had been splenectomized at the age of 48 with clinical improvement and an increase in hemoglobin level (Table 1). Before splenectomy she had required occasional transfusion therapy.

Her father and sister had the typical hematologic features of β-thalassemia minor whereas her mother had normal red cell indices with a borderline Hb A2 level (Table 1) and no α-globin gene triplication.1

Direct sequencing2 of the propositus’ β-globin gene showed compound heterozygosity for the Mediterranean β IVSI-1 (G-A) mutation and for a recently described 5’ UTR +33 C-G mutation (Figure 1). These mutations were confirmed respectively by BsaB1 and Nla IV amplified DNA digests. The IVSI-1 (G-A) mutation is present in her father’s and sister’s β-globin gene and the 5′ UTR +33 (C-G) mutation is present in her mother’s β-globin gene.

The C to G mutation in the +33 position of the β-globin gene was first described in two unrelated Greek Cypriot families3 associated with β haplotype II (++) according to Orkin.6 In the present case the 5′ UTR +33 (C-G) mutation is associated with β haplotype V (---++) suggesting an independent origin for the mutation in this family.

Maria Celeste Bento,* Maria Leticia Ribeiro,* Elizabete Cunha,* Paula Gonçalves,* Guillermo Martin-Núñez,∗ Gabriel Tamagnini*

*Unidade de Hematologia Molecular, Serviço de Hematologia, Centro Hospitalar de Coimbra, Portugal; °Serviço de Hematologia, Hospital Virgen del Puerto, Plasencia, España

Key words
Thalasssemia intermedia, silent thalassemia

Correspondence
Celeste Bento, M.D., Unidade de Hematologia Molecular, Serviço de Hematologia, Hospital Pediátrico de Coimbra, 3000 Coimbra, Portugal. Phone: international +351-239-717216 – Fax: international +351-239-480370 – E-mail: uhm@hpc.clc.min-saude.pt

References
thrombosis was not different from that observed in placebo recipients.

In summary, the peri-operative use of rHuEpo in our patients had beneficial results and all operations were performed as scheduled avoiding any blood transfusion and its associated risks. We believe that rHuEpo is an attractive, safe and effective alternative to allogeneic and autologous blood transfusion, not only for Jehovah’s witnesses but for all patients scheduled for orthopedic surgery.

Konstantinos L. Bourantas, Theodoros A. Xenakis, Eleftheria Chr. Hatzimichael, Vasilios Kontogeorgakos, Alexandros E. Beris
Hematology Clinic, Department of Internal Medicine and *Department of Orthopedic Surgery, Ioannina Medical School, University of Ioannina, Greece

Key words
Erythropoietin, perioperative use, Jehovah’s Witnesses, and elective orthopaedic surgery.

Correspondence
K.L. Bourantas, M.D., Associate Professor of Hematology, I. Kiprou, Anatoli, 455 00 Ioannina, Greece. Phone: international +30-651-42095 - Fax: international +30-651-40421 - E-mail: riax@compulink.gr

References

Methylenetetrahydrofolate reductase gene polymorphism and coronary artery disease in Taiwan Chinese

Hyperhomocysteinemia has been identified as an independent risk factor for occlusive vascular diseases. The C667T 5’, 10-methylenetetrahydrofolate reductase (MTHFR) genotype is correlated with increased plasma homocysteine levels especially under the condition of low plasma folate level. This is the first report about the frequency of C667T MTHFR in coronary artery disease and normal controls in Taiwan Chinese.

Sir,
Mild to moderate hyperhomocysteinemia has been documented as an independent risk factor for coronary, cerebral and peripheral arteriosclerotic disease. In addition to deficiencies in vitamins B6, B12, folic acid and some pathologies, namely renal and hepatic insufficiency, reduced activity of the enzymes cystathionine-synthase (CBS) or 5’, 10-methylenetetrahydrofolate reductase (MTHFR) are the most common genetic defect that results in mild hyperhomocysteinemia is a C to T substitution at nucleotide 677 of the MTHFR gene, that converts an alanine to a valine residue. This mutation results in thermolabile MTHFR; homozygotes for the mutation have about 30% and heterozygotes about 65% of the MTHFR activity found in individuals without the mutation. Homozygotes for the mutation also have elevated circulating homo-

Table 1. Patients’ hematologic data at the initiation of rHuEpo treatment, on the day of operation and thirty days after.

<table>
<thead>
<tr>
<th>Cases</th>
<th>At the initiation of rHuEpo treatment</th>
<th>On the day of operation</th>
<th>30 days after surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gender/age (years)</td>
<td>F/58</td>
<td>M/46</td>
</tr>
<tr>
<td></td>
<td>Hemoglobin, g/dL</td>
<td>11.0</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>WBC x 10^9</td>
<td>6.2</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>Platelets x 10^9</td>
<td>180</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Erythropoietin, mU/mL</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Ferritin, ng/dL</td>
<td>25</td>
<td>18</td>
</tr>
</tbody>
</table>

A* = first operation; B* = second operation; F= female, M= male

Table 2. Mean hemoglobin and erythropoietin levels at the initiation of rHuEpo administration and at the day of surgery.

<table>
<thead>
<tr>
<th>At the start of rHuEpo treatment</th>
<th>At the day of the surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean hemoglobin, g/dL ± SD</td>
<td>11.7±1.31</td>
</tr>
<tr>
<td>Mean erythropoietin mU/mL ± SD</td>
<td>19±3.64</td>
</tr>
<tr>
<td>Wilcoxon’s signed rank test</td>
<td>p<0.05</td>
</tr>
</tbody>
</table>

Wilcoxon's signed rank test
p<0.05
p<0.05