ABSTRACT

In this paper we describe a case of a 65-year old man with a lymphoid blastic crisis of a chronic granulocytic leukemia occurring seven years after a palatine tonsillar non-Hodgkin’s lymphoma treated with chemotherapy and radiation therapy. Bone marrow cytogenetic study demonstrated the presence of the typical t(9;22)(q34;q11) and the molecular biology study showed the p210 rearrangement (b2a2). The patient died within a few months, unresponsive to any treatment. This is the first case, described in literature, of a secondary chronic granulocytic leukemia onset with a lymphoid blastic crisis. The authors report the case and a literature review.

Correspondence: Luca Mele, M.D., Istituto di Semeiotica Medica, Università Cattolica del Sacro Cuore, largo Francesco Vito 1, 00168 Rome, Italy. Phone: international +39-06-30154180 – Fax international +39-06-3051343 – E-mail: liviop@osa.net

In this paper we describe a case of a 65-year old man with a lymphoid blastic crisis of a chronic granulocytic leukemia occurring seven years after a palatine tonsillar non-Hodgkin’s lymphoma treated with chemotherapy and radiation therapy. Bone marrow cytogenetic study demonstrated the presence of the typical t(9;22)(q34;q11) and the molecular biology study showed the p210 rearrangement (b2a2). The patient died within a few months, unresponsive to any treatment. This is the first case, described in literature, of a secondary chronic granulocytic leukemia onset with a lymphoid blastic crisis. The authors report the case and a literature review.

©2000, Ferrata Storti Foundation

Key words: lymphoma; chronic granulocytic leukemia; lymphoid blastic crisis

Myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML) are well recognized complications of chemotherapy and in particular of alkylating agents and epipodophyllotoxins which are considered the most leukemogenic drugs. Rare cases of chronic granulocytic leukemia (CGL) following other malignancies have been reported. In this paper we describe the case of a lymphoid blastic crisis in CGL occurring seven years after treatment for a non-Hodgkin’s lymphoma (NHL). Furthermore we review the literature on associations between CGL and prior malignancies.

Case report

In June 1991 a 58-year old Caucasian male developed a palatine tonsillar diffuse centroblastic-centrocytic NHL (follicle center lymphoma grade III according to the REAL classification). The patient underwent a right tonsillectomy and investigations to stage the disease. A total body CT scan showed involvement of the right latero-cervical lymph nodes. Hematologic and chemical examinations

Analysis of peripheral blood revealed anemia (Hb 8.4 g/L), thrombocytopenia (Plt 57 × 10^9/L), and leukocytosis (WBC count 98.8 × 10^9/L, with 35% neutrophils, 20% lymphocytes, 5% monocytes, 4% eosinophils, 11% immature granulocytes, blasts 25% and 2 orthochromatic erythroblasts every 100 leukocytes). A high serum level of LDH (1,001 IU/dL) was present. All the other chemical parameters were within normal ranges.

Bone marrow morphology

A bone marrow smear was hypercellular with 39% blasts, 19% cells of granulopoietic lineage, 15% erythroblasts, 27% lymphocytes and very rare megakaryocytes. Granulocytic and erythropoietic precursor showed dysplastic features with megaloblastic appearance. The great majority of the blast cell population in blood and bone marrow was composed of small-to-medium size peroxidase negative immature cells (Figure 1).

Immunophenotypic, cytogenetic and molecular biology studies

Immunophenotypic analysis of the bone marrow blasts showed: CD10 48%, CD19 62%, CD22 54%
CD45 94%, CD33 83%, CD34 79%, MPO 2%, TdT 60%.

Chromosome analysis was performed according to standard techniques with R and G banding, according to the International System for Cytogenetic Nomenclature.26 Six cells were evaluable and characterized by the presence of t(9;22)(q34;q11) in all analyzed mitoses; no other abnormalities were found.

The molecular biology study, performed by the reverse-transcriptase chain reaction (RT-PCR) technique, as elsewhere described,26 demonstrated the p210 rearrangement (b2a2).

Treatment and outcome

These data allowed us to make the diagnosis of lymphoid blast crisis in Ph1 chromosome-positive CGL. The patient was, therefore, started on induction treatment according to the GIMEMA ALL 0288 trial27 (vincristine 2 mg/m² i.v., days 1, 8, 15, and 22; daunorubicin 40 mg/m² i.v. days 1, 8, and 15; asparaginase 6,000 IU/m² q15 to q21; methylprednisolone 60 mg/m² days 1 to 14; methylprednisolone 40 mg/m² days 15 to 31) but did not respond. Another chemotherapy course including cytarabine (2,000 mg/m² i.v. days 1 to 5), idarubicin (20 mg/m² i.v. day 3), G-CSF (300 µg s.c. days 7 to 20) was given but the patient was again resistant. The patient died in February, 1999 of progressive disease.

Discussion

Treatment-related leukemias are a well recognized event, in mostly cases being AM L or MDS.23,24 Rarely, secondary acute lymphoblastic leukemia (SALL) has been reported.28 From 1983 to date only a few cases of CGL following a previous malignancy (PM) have been reported (Table 1).24-28 Epidemiologic multicenter studies, performed on large series of patients with neoplasia, demonstrated the possibility of CGL after Hodgkin’s disease, ovarian cancer, breast cancer, uterine cancer and other malignancies.29-33 However, these reports lacked clinical or laboratory data that could be useful for clear definition of the real features of secondary CGL (sCGL).

In the last 15 years, including our case, 32 adult patients (M/F 18/14, median age 46 years, range 19-77) with sCGL have been reported in literature. Hematologic malignancies are the most prevalent PMs reported (22/32, 69%) (10 Hodgkin’s disease, 5 NHL, 4 CGL, and 3 ALL). In all cases chemotherapy and/or radiotherapy was employed. Eight patients were treated with chemotherapy alone, 9 with only radiotherapy and the remaining 15 patients received combined chemo-radiotherapy. The median latency between the two malignancies was 60 months (range 18-192) (in one case the latency was not reported) and in all patients, except in our case, sCGL was diagnosed in a chronic phase. A meta-analysis of survival, performed on 21 evaluable cases, showed a median survival of 18 months (range 3-216). The prognosis of these patients appears poor, and it seems that the outcome of sCGL is worse than de novo CGL. This consideration is strengthened by comparison of these data with those from patients with de novo CGL enrolled in the Italian Co-operative Study Group on Chronic Myeloid Leukemia, who had a longer median survival (69 months for the interferon-α arm and 46 months for the chemotherapy arm).36

In a recent review, Pedersen-Bjergaard et al.24 reported 26 cases of Ph1 chromosome positive AM L, ALL, and CGL following chemotherapy for Ph1 chromosome negative leukemia or other malignancies. These patients received different antineoplastic combinations for primary malignancy, with or without radiotherapy. Even though alkylating agents were administered to half of the patients, the authors hypothesized that the various types of chemotherapies, including anthracyclines and epipodophyllotoxins, had a common mechanism of provoking balanced chromosome aberrations, and could be considered the most relevant leukemogenic agents.

On the other hand, ionizing radiation can be involved in leukemic transformation, as well reported in literature.10,37,38 In particular, in 1996 Melo et al. reported a BCR/ABL fusion gene which may be induced in cultured cells exposed in vitro to high-dose ionizing radiation.39

Here we report the case of a Ph1 chromosome positive CGL following chemotherapy, diagnosed during the lymphoid blastic crisis phase. Peripheral blood and bone marrow morphologic features with circulating immature granulocytes, immunophenotype and molecular biology studies strongly supported a diagnosis of sCGL, although the possibility of a Ph1 chromosome positive ALL could not be completely excluded. However, the latency between NHL and sCGL (7 years) and the treatments received for the PM, alkylating agents and radiotherapy, suggest that these could have been responsible for the sCGL. Nevertheless, in a large series of patients with acute leukemia, many cases of secondary leukemia developed after a PM not treated with chemo and/or radiotherapy.40 This observation suggests the possibility of a familial predisposition. We cannot exclude that sCGL might simply represent randomly occurring cases of de novo CGL in the many thousands of patients being followed-up after previous chemo-
and/or radiotherapy. Further epidemiologic studies on large series of CGL patients, conducted retrospectively and prospectively, could be helpful to know the influence of a PM on the development of sCGL.

Contributions and Acknowledgments
LM and LP designed the study and were responsible for writing the paper. PC, GZ and ER performed biological studies. LM, LP, FE and LT followed the patient clinically. GL reviewed the manuscript and approved its final form. The criterion for the order in which the authors appear is based on the importance of their contribution to the paper.

Funding
This work was supported in part by a grant from MURST 60% (Università Cattolica S. Cuore, Rome, Italy).

Disclosures
Conflict of interest: none.

References


