Anaplastic lymphoma kinase (ALK) expression as a marker of malignancy. Application to a case of anaplastic large cell lymphoma with huge granulomatous reaction

PIER PAOLO PICCALUGA, STEFANO ASCANI, GIULIO FRATERNALI ORCIONI, MILENA PICCIOLI, ALESSANDRO PILERI JR, BRUNANGELO FALINI, STEFANO A. PILERI

Service of Pathologic Anatomy and Hematopathology, Institute of Hematology and Clinical Oncology "L. & A. Seràgnoli", Bologna University, Policlinico S. Orsola, Bologna; Institute of Pathologic Anatomy, Perugia University, Ospedale Santa Maria, Terni; Hematopathology Laboratory, Institute of Hematology, Perugia University, Perugia, Italy

Correspondence: Stefano A. Pileri, M.D., Servizio di Anatomia Patologica ed Ematopatologia, Istituto di Ematologia e Oncologia Medica L. & A. Seràgnoli, Università di Bologna, Policlinico S. Orsola, Bologna, Italy. Phone: international +39 051 6364562 – Fax: international +39 051 6363606 – E-mail: pileri@almadns.unibo.it

The term anaplastic large cell lymphoma (ALCL) is applied to a group of neoplasms characterized by a certain degree of heterogeneity in terms of clinical presentation, morphology, phenotype, and genotype. About 60% of primary systemic ALCLs of the common type and most, if not all, lymphohistiocytic and small-cell variants carry the (2;5)(p23;q35) translocation, while the giant-cell-rich and Hodgkin’s-like forms most often lack this aberration. Molecular studies have shown that t(2;5) produces the formation of a hybrid gene, termed NPM/ALK, which encodes for a chimeric protein formed by the N-terminal region of nucleophosmin (NPM) and the entire cytoplasmic domain of the tyrosine-kinase receptor ALK. Monoclonal antibodies raised against the intracytoplasmic portion of ALK and the N- and C-terminal regions of NPM (N-NPM and C-NPM) have recently been developed and applied to the study of ALCL. The tumor shows a characteristic staining pattern in the presence of t(2;5): in fact, anti-ALK and N-NPM antibodies produce nuclear and cytoplasmic positivity, while those against C-NPM provide an intranuclear signal. This pattern is due to the fact that the hybrid NPM/ALK protein is produced in the cytoplasm and partially shuttled to the nucleus by the formation of heterodimers with normal NPM. On the other hand, normal NPM is quickly and almost entirely harvested within the nucleus in the form of homodimers. In a small number of ALCLs, ALK-positivity is limited to the cytoplasm: this finding corresponds to the occurrence of chromosomal aberrations other than t(2;5), but involving chromosome 2 at p23, such as inv(2)(p23;q35), t(1;2)(q21-25;p23), t(2;2)(p23;q23), or t(2;3)(p23;q35). The expression of ALK protein seems to attain prognostic relevance, since patients with primary systemic ALK+ ALCLs (also termed ALKomas) have a significantly better response to therapy and survival rate than negative ones. Herein, we report on an example of ALCL, characterized by misleading clinical and morphologic findings, which was definitively diagnosed and appropriately treated thanks to the application of the new anti-ALK and NPM antibodies.
Case Report

In December 1998, a 9-year old female – who had received a tick bite on the neck 20 days previously– entered another hospital for sudden supraclavicular lymph node swelling and high fever. Physical examination and CT scan showed a mediastinal mass and hepatosplenomegaly. Serologic tests revealed a weak positivity for anti-rickettsial antibodies. Antibiotic therapy, in association with antifungal agents and corticosteroids, were started. After a transient improvement of symptoms, the patient developed severe interstitial pneumonia with pulmonary failure and was admitted to an intensive care unit. At that time, the supraclavicular lymph node was removed and a diagnosis of hyperimmune reaction was suggested based on morphologic and phenotypic findings. Because of the rapid deterioration of the patient’s general conditions, the pathologic material was sent for consultation to the Service of Pathologic Anatomy and Haematopathology of Bologna University, where a diagnosis of anaplastic large cell lymphoma was made (see below). The patient was treated with an antiblastic regimen containing methotrexate, cyclophosphamide, doxorubicin, vincristine, and prednisone. After the second course she went into complete remission, which is still maintained at the time of this writing.

Pathologic findings

The lymph node biopsy had been fixed in 10% buffered formalin for 24 hours and processed according to routine procedures. At microscopic examination of hematoxylin/eosin and Giemsa stained preparations, the normal lymph node structure was totally effaced due to a diffuse growth mainly consisting of epithelioid cells with a tendency to granulomata formation (Figure 1). Occasional features of hemophagocytosis were observed. In this context, there were a few plasma cells, rare eosinophils, a moderate number of small-medium sized, irregularly shaped lymphocytes, and some mononuclear blasts with deeply basophilic cytoplasm, horseshoe-shaped nuclei and prominent nucleoli (Figure 2). Several mitotic figures were seen. P.A.S. and Ziehl-Neelsen stains did not reveal fungi or acid-fast bacilli. At immunohistochemistry, which was performed on routine sections by applying previously described antigen retrieval methods, the alkaline anti-alkaline phosphatase immune complexes (APAAP) technique and the panel of antibodies listed in Table 1, the blasts and most lymphoid elements carried the following phenotype: CD30+, EMA+, TIA-1+, CD3±, OPD4±, CD1a-, CD8-, CD15-, CD21-, CD68-, CD79-, CNA42-, MPO-, glycophorin A- (Figure 3). About 60% of the blasts and lymphoid elements were in the cell cycle, as shown by the Ki-67 marking. Epithelioid elements turned out to be CD68+, CD4+ and Mib-1+. A diagnosis of ALCL with a huge epithelioid cell reaction was proposed. This interpretation was confirmed by further immunostaining that showed cytoplasmic and nuclear ALK (Figure 4) and N-NPM positivity both in the blasts and lymphoid component, thus supporting the occurrence of the ALCL-associated translocation (2;5)(p23;q35).

Discussion

The diagnosis of ALCL may, at times, be difficult by conventional light microscopy. This is not surprising if one considers that the tumor was only identified in 1985, when Stein et al. observed the reactivity of the Ki-1/CD30 monoclonal antibody in cases that had previously been diagnosed as malignant histiocytosis or metastatic carcinoma. Immunohistochemistry is
still of paramount importance for the recognition of the tumor, as well as for its differentiation from other neoplasms – such as Hodgkin’s disease – which also regularly express the CD30 molecule.1,4 Immunophenotyping is indeed mandatory in diagnosing the lympho-histiocytic variant of the tumor (LH), which mainly occurs in children or young individuals. In fact, this form of ALCL is often misinterpreted as a hyperimmune reaction with detrimental results for the patients, who – all potentially curable with present therapies – are instead invariably lost because of the ineffective approaches employed or the delay in therapy administration.2-4 The difficulties in making the diagnosis of ALCL-LH are due to the fact that the neoplastic cells are obscured by a huge number of benign quiescent histiocytes (CD68+/Ki-67). Therefore, the pathologist focuses his attention on the reactive component and regards the CD30+ anaplastic cells scattered throughout as expression of the lymphoid activation, which regularly occurs in florid immune responses.23 Careful analysis, however, shows that the blasts are CD30+, EMA+, CD3+, CD45+, CD20-, CD79a-, CD15-, and LMP-1-.4,22 In hyperimmune reactions, there are numerous CD30+ blasts, but they are of mixed (B- and T-cell) nature, do not express EMA, and often carry LMP-1, due to the occurrence of EBV infection.22,23 Recently, extensive application of the newly developed anti-ALK antibodies has revealed that most if not all ALCL-LH do carry t(2;5), as shown by the strong positivity of the blasts, as expression of the translocation, thus ruling out the possibility of a hyperimmune reaction, as well as of other pathologic conditions, including bacterial, viral or protozoal infections.24 The occurrence of a tick bite a few weeks before the onset of our patient’s disease and the equivocal results of serologic tests had further strengthened the hypothesis that an infective agent had produced the histologic picture. In this respect, it should be underlined that the development of ALCL following an insect sting has never been the object of a specific communication in the literature, although it was matter of discussion at a workshop on peripheral T-cell lymphomas (Barcelona, May 30-June 1, 1997) without any conclusion on its significance being achieved.25 Immunophenotyping played a basic role in making the correct diagnosis. In particular, the detection of ALK positivity gave the definitive proof of the malignant nature of the process, thus ruling out the possibility of a hyperimmune reaction, as well as of other pathologic conditions characterized by a huge granulomatous reaction, such as epithelioid-rich mixed-cellularity Hodgkin’s disease and Lennert’s lymphoma.26 The latter conditions are, in fact, both negative for the NPM/ALK hybrid gene product.22,24 In conclusion, our report underlines the practical usefulness of applying the newly developed anti-ALK antibodies to the detection of an occult ALCL population, both in cases with a prominent reactive component and in samples – such as the bone marrow – with minimal amounts of tumor at disease presentation or following therapy. Under these circumstances, the immunohistochemical test, which is also quite cheap and easy to use, allows correct therapeutic management and possible salvage of patients, who would otherwise be lost or undertreated.

Contributions and Acknowledgments
PPP: drafting the manuscript. SA: morphologic analysis. GFO: review of the literature. MP: immunohistochemical

Table 1. List of the antibodies used for the present study.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Reactivity</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3a</td>
<td>CD3a</td>
<td>Immunotech (France)</td>
</tr>
<tr>
<td>CD3 (polyclonal)</td>
<td>CD3</td>
<td>Dako (Denmark)</td>
</tr>
<tr>
<td>OPD4</td>
<td>CD45SR0</td>
<td>Dako (Denmark)</td>
</tr>
<tr>
<td>144B</td>
<td>CD8</td>
<td>Prof. D.Y. Mason</td>
</tr>
<tr>
<td>CD31</td>
<td>CD15</td>
<td>Dako (Denmark)</td>
</tr>
<tr>
<td>IF8</td>
<td>CD21</td>
<td>Dako (Denmark)</td>
</tr>
<tr>
<td>Ber-H2</td>
<td>CD30</td>
<td>Prof. H. Stein</td>
</tr>
<tr>
<td>PG-M1</td>
<td>CD68</td>
<td>Prof. B. Falini</td>
</tr>
<tr>
<td>CB117</td>
<td>CD79a</td>
<td>Prof. D.Y. Mason</td>
</tr>
<tr>
<td>Tla-1</td>
<td>Tla-1</td>
<td>Coulter (California)</td>
</tr>
<tr>
<td>JCI59</td>
<td>Glycophorin A</td>
<td>Dako (Denmark)</td>
</tr>
<tr>
<td>Myeloperoxidase (polyclonal)</td>
<td>Myeloperoxidase (NPO)</td>
<td>Dako (Denmark)</td>
</tr>
<tr>
<td>CNA-42</td>
<td>Follicular dendritic cells</td>
<td>Prof. G. Delsol</td>
</tr>
<tr>
<td>E29</td>
<td>Epithelial membrane antigen (EMA)</td>
<td>Dako (Denmark)</td>
</tr>
<tr>
<td>ALKc</td>
<td>ALK protein</td>
<td>Prof. B. Falini</td>
</tr>
<tr>
<td>376</td>
<td>N-terminal region of NPM</td>
<td>Prof. B. Falini</td>
</tr>
<tr>
<td>338</td>
<td>C-terminal region of NPM</td>
<td>Prof. B. Falini</td>
</tr>
<tr>
<td>Mib-1</td>
<td>Proliferation-associated nuclear antigen Ki-67</td>
<td>Prof. J. Gerdes</td>
</tr>
</tbody>
</table>

Antibody Reactivity Source

1. Antibody Reactivity Source

2. Immunophenotyping

3. CD30

4. EMA

5. CD3

6. CD45

7. CD20

8. CD79a

9. CD15

10. LMP-1

11. CD68

12. Ki-67

13. EMA

14. ALK

15. NPM

16. CD8

17. CD45R0

18. CD1a

19. JCB117

20. IF8

21. C3D1

22. CD45

23. CD21

24. CD2

25. CD15

26. PG-M1

27. OPD4

28. IF8

29. Ber-H2

30. JCI59

31. Mib-1

32. CNA-42

33. E29

34. IC44

35. 144B

36. CD3

37. Myeloperoxidase

38. Myeloperoxidase

39. Glycophorin A

40. Follicular dendritic cells

41. Epithelial membrane antigen

42. ALK protein

43. N-terminal region of NPM

44. C-terminal region of NPM

45. Proliferation-associated nuclear antigen Ki-67

46. Prof. G. Delsol

47. Dako (Denmark)

48. Prof. B. Falini

49. Prof. B. Falini

50. Prof. B. Falini

51. Prof. J. Gerdes

52. Dako (Denmark)

53. Dako (Denmark)

54. Dako (Denmark)

55. Dako (Denmark)

56. Dako (Denmark)

57. Dako (Denmark)

58. Dako (Denmark)

59. Dako (Denmark)

60. Dako (Denmark)

61. Dako (Denmark)

62. Dako (Denmark)

63. Dako (Denmark)

64. Dako (Denmark)

65. Dako (Denmark)

66. Dako (Denmark)

67. Dako (Denmark)
analysis. AP Jr: clinical analysis. BF: revising the manuscript.
SAP: design of the study.
The authors thank M. r. Luigi Chilli and M. s. Federica Sandri for their skillful technical assistance.

Funding
This paper was supported by grants from A.I.R.C. (Milan) and M.U.R.S.T., Rome, Italy.

Disclosures
Conflict of interest: none.
Redundant publications: no substantial overlapping with previous papers.

Manuscript processing
Manuscript received March 3, 2000; accepted July 6, 2000.

References