Idiotypic vaccination for B-cell malignancies as a model for therapeutic cancer vaccines: from prototype protein to second generation vaccines

PIER ADELCHI RUFFINI,* SATTVA S. NEELAPU, LARRY W. KWAK, ARYA BIRAGYN
Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
* On leave of absence from the Divisione di Oncologia Medica Falck, Ospedale Niguarda Ca' Granda, Milan, Italy

Background and Objectives. Cancer vaccines are aimed at inducing tumor-specific immunity by immunizing patients with tumor cells or their antigenic components, known as tumor-associated antigens (TAA). Antigens which are either mutated or selectively or abundantly expressed in malignant, but not in normal, cells are considered as TAA. Each patient's B-cell malignancy is usually derived from a single expanded B-cell clone, which expresses an immunoglobulin (Ig) with a unique idiotype (Id, variable regions of Ig). Therefore, Id can be regarded as a TAA and a potential target in clinical vaccination approaches. Although use of tumor-derived Id as an immunogen to elicit antitumor immunity against B-cell malignancies is an attractive idea, the broader use of idiotypic vaccines has been hampered by the fact that autologous Id is not only a weakly immunogenic, self antigen, but is also patient-specific so that the vaccine must be individually prepared for each patient. In this review we will first summarize the latest data from the clinical tests of experimental idiotypic vaccines and discuss issues relevant to the clinical application of cancer vaccines in general; we will then critically review new trends and achievements in the development of the second generation vaccine formulations.

Evidence and information sources. The authors of the present review are currently working in the field of B-cell tumor immunotherapy and have contributed original papers to peer-reviewed journals. The material analyzed in the present review includes articles and abstracts published in journals covered by the Science Citation Index and Medline.

State of Art. The results from a number of experimental models and clinical trials have demonstrated that vaccination with tumor-derived Id can induce immune responses directed against the tumor. Idiotypic vaccines can be divided into two types, although both are at the experimental stage: traditional and second generation, based on the methods of production and vaccine delivery. Second generation vaccines utilizing genetically engineered protein and DNA formulations have, for the first time, opened up the possibility of streamlining production of simpler and effective custom-made idiotypic vaccines. The use of various adjuvants and exogenous carriers is being replaced by more potent genetic carriers which target Id and various co-stimulatory molecules to professional antigen presenting cells (APC), particularly dendritic cells (DC).

Perspectives. Id is the only widely accepted tumor marker and is a promising therapeutic target for immunotherapy of B-cell malignancies. It has been unequivocally established that Id vaccination of patients with follicular lymphoma administered when patients have minimal residual disease, has antitumor effect and potential to improve the clinical outcome. Consequently, the applicability of Id vaccines for other B-cell malignancies such as chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma needs to be tested. Idiotypic vaccines should be tailored to target preferentially various subsets of immune cells, such as DCs, which would up take and properly process and present Id, activating both arms of the immune system, humoral and cellular. Moreover, the vaccine should induce the production of a milieu of inflammatory cytokines and chemokines at the delivery site to elicit a T helper type 1 (Th1) immune response. Components of the inflammatory response can be used to target DCs in vivo, activating the so-called danger signal for circumventing the poor immunogenicity of self-tumor antigens. For example, chemotactic factors of innate immunity are able to deliver Id to APC and render this otherwise non-immunogenic antigen immunogenic. The strategies developed for Id vaccines can be used as a general strategy for eliciting T-cell immunity to other weakly immunogenic, clinically relevant self-tumor antigens.

©2002, Ferrata Storti Foundation

Key words: B-cell malignancies, idiotype, vaccine, chemokines.

It is becoming clear that an effective antitumor immunity depends on activation of both arms of the immune system, humoral and cellular. In particular, the importance of CD8+ T-cells in inhibition of tumor growth and eradication of cancer cells has been often emphasized. In addition, CD4+ T-cells are required for generation and main-
Idiotypic vaccination for B-cell malignancies with prototype protein vaccines: results and lessons from clinical trials

Follicular lymphomas (FL) are tumors of germinal center B-lymphocytes. The FL cells are relatively well-differentiated B-cells, corresponding to the resting, Ag-responsive B-lymphocytes with a clonal origin, which express unique Ig variable regions, a tumor antigen/marker. Surface expression of a clear tumor-specific antigen associated with a relatively indolent course of the disease provides a favorable clinical setting for idiotypic vaccination. However, the vaccine utilizes a self-antigen naturally protected by tolerance mechanisms as an immunogen to induce anti-idiotypic, and consequently antitumor immunity. Moreover, prior to vaccination, patients are treated with several cycles of chemotherapy which may affect their immunocompetence. Therefore, the first basic question is whether it is even possible to immunize these patients against a weakly immunogenic self-protein such as Id. The second question is whether immunization can produce clinical benefit. Although earlier clinical studies demonstrated that Id vaccination elicits specific anti-Id antibodies and some cellular responses which correlated with improved survival of patients with B-cell lymphoma, the direct role of tumor-specific T-cells, particularly CD8+ cells, has been demonstrated only recently. For example, autologous tumor-specific cytotoxic CD8+ T-cells as well as antigen-specific helper CD4+ T-cells were detected in 19 out of 20 previously untreated patients with follicular lymphoma (FL) in chemotherapy-induced first complete remission (CR), treated with a series of five monthly vaccinations with autologous Ig protein conjugated to an exogenous carrier, keyhole limpet hemocyanine (KLH), together with local subcutaneous administration of granulocyte-macrophage colony-stimulating factor (GM-CSF). Evidence of antitumor immunity correlated with eradication of minimal residual disease (MRD). At diagnosis and after chemotherapy, despite being in CR, eleven of 20 patients had tumor cells with unique bcl-2 rearrangements at the major breakpoint region (M BR) detectable in their blood by polymerase chain reaction (PCR). However, eight of the eleven (73%) converted to sustained molecular remissions following vaccination. These results provide the definitive and affirmative answer to the first question of whether it is possible to immunize against a self-tumor antigen, whereas the second question about the clinical benefit could not be
tenance of potent antitumor immunity. Since most T-cell tumor-associated antigens (TAA) identified so far are self-antigens, the ability to generate potent T-cell-mediated responses against self-antigens is a prerequisite for the validation of cancer vaccines in humans. There are no widely accepted TAA for B-cell malignancies except B-cell-derived immunoglobulin, a clonal marker for each patient’s tumor. The specific antigenic determinants of immunoglobulin (Ig) variable (V) regions, termed idiotypic (Id), are unique and produced by a single B-cell clone. Since the first demonstration by Sirisinha, Eisen and Lynch that syngeneic tumor-derived Ig could induce idiotypic-specific antibody production and subsequently anti-MOPC-315 tumor response, Id vaccination remains an attractive approach. The idea is further supported by numerous successful experiments conducted both in animal models of B-cell malignancies and in patients with B-cell lymphoma. However, unlike other TAA, a wider utilization of idiotypic vaccines is hampered by the fact that they have to be custom-made for each patient. However, the second generation of more effective idiotypic vaccines, which are simpler to produce and more potent, are being explored extensively, primarily in animal models. It is practically feasible and relatively simple to generate artificial recombinant molecules which are much smaller in size and retain all the unique features of parental tumor-derived Ig, not shared with other molecules. For example, unique fragments of Ig can be cloned from an individual malignant B-cell into a so-called single chain antibody (scFv), consisting solely of VH and VL fragments linked together in frame with a short peptide linker sequence. Although fragile conformation of the scFv can be disrupted by cross-linking with adjuvants, alternative approaches such as genetic fusion to various carriers, which bear T-helper epitopes and xenogeneic immunogenic fragments from human Ig Fc, pathogens and toxins have been successfully used to improve immunogenicity of scFv-based vaccines. Moreover, effective antigen-specific immunity can be elicited by targeting antigens to antigen-presenting cells (APC) via ligands for cell surface receptors such as mannose receptor, FcR and DEC205. Recently, we have proposed a novel strategy to enable more specific attraction and targeting of subsets of APC, particularly immature dendritic cells (DCs), utilizing chemokine receptors. We demonstrated that both arms of immunity, cellular and humoral, can be induced by vaccination with fusion proteins consisting of scFv and chemokine.
answered by a single arm study without a concurrent control group of patients, and it is currently being addressed in a randomized, controlled phase III trial sponsored by the National Cancer Institute (Figure 1).

A major goal in idiotypic vaccination for FL is to streamline the production of these individualized vaccines while maintaining or improving their ability to generate T-cell-mediated responses and antitumor effects. A novel formulation of Id vaccine in which KLH is replaced by a more uniform liposomal carrier containing recombinant human IL-2 has recently been tested in a pilot clinical trial in FL patients in CR or PR after uniform chemotherapy. Approximately 6 months after chemotherapy, patients received 5 doses of the liposomal Id/IL-2 vaccine subcutaneously at monthly intervals. Preliminary results show that this vaccine formulation is well tolerated and immunogenic in all 9 patients evaluated.18

Overall, as summarized in Table 1, meaningful immunologic responses and antitumor effects have been reported in FL patients using different formulations of Id vaccine. However, the idiotypic vaccination in B-cell tumors other than FL is less advanced. In multiple myeloma (MM), the vigorous Id-specific immune responses reported in lymphoma have not been detected yet (Table 2). This may be explained by immunosuppression such as functional defects observed in peripheral blood DC,19-21 and/or large burden of circulating MM-derived Id, which could neutralize anti-Id humoral responses. Unlike lymphomas, Id produced by myeloma cells is mostly secreted into the serum and the malignant plasma cells express very little surface Id as a potential target for anti-Id humoral responses and ADCC. However, it has recently been shown that MM patients can mount T-cell responses to tumor idiotype, for example, autologous monocyte-derived DC pulsed with Id protein induced cytotoxic T lymphocytes (CTL) that are specific for the autologous primary myeloma cells and secretion of Th1 cytokines in vitro.22,23 Therefore, these data support possibility and importance of induction of antitumor cellular responses in patients with MM treated with Id-vaccine.

Id vaccines for aggressive lymphomas have just begun to be tested. This subgroup of lymphomas display less favorable features, such as lower levels of surface-expressed Id and a more rapid clinical course. However, preliminary data from a phase II study demonstrate that patients with different subtypes of aggressive lymphoma in their first chemotherapy-induced CR, vaccinated with recombinant Id-KLH and GM-CSF developed tumor-specific immune responses, although almost exclusively humoral.24

Dendritic cells, a major regulator of immune responses, have been shown to effectively process and present pulsed tumor antigens and elicit potent CTL and antitumor responses both in animal models and clinical trials.25,26 Pilot studies have been initiated also for patients with FL27,28 and MM29,30 by vaccinating patients mostly at the MRD state with autologous DC pulsed with tumor-derived Id, alone or coupled with KLH. DC vaccines were well tolerated without significant side effects and elicited anti-KLH humoral responses. Importantly, in FL the
Table 1. Summary of recent Id-vaccine clinical trials in follicular lymphoma.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Clinical setting</th>
<th>Immune responses</th>
<th>Antitumor effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id-KLH + GM-CSF</td>
<td>1st clinical complete remission</td>
<td>19/20 tumor-specific T-cell cytokine release 8/11 molecular remissions</td>
<td>6/6 tumor-specific CTL 15/20 Id-specific antibodies</td>
<td>(17)</td>
</tr>
<tr>
<td>Id-KLH</td>
<td>residual disease; complete remission</td>
<td>17/41 Id-specific antibodies 7/41 Id-specific T-cell proliferation 2/20 CR</td>
<td>11/16 tumor-specific CTL↑</td>
<td>(15)</td>
</tr>
<tr>
<td>Id-KLH + GM-CSF</td>
<td>residual disease; complete remission</td>
<td>8/9 Id-specific antibodies</td>
<td>2/4 CR</td>
<td>(97)</td>
</tr>
<tr>
<td>Id-KLH or Id-KLH + GM-CSF</td>
<td>residual disease; complete remission</td>
<td>8/10 Id-specific T-cell proliferation 2/10 Id-specific antibodies</td>
<td>1 molecular remission</td>
<td>(27)</td>
</tr>
<tr>
<td>Id-pulsed DCs</td>
<td>residual disease</td>
<td>8/10 Id-specific T-cell proliferation 2/10 Id-specific antibodies</td>
<td>0/12</td>
<td>(99)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>1st remission</td>
<td>6/18 Id-specific T-cell proliferation 5/18 Id-specific antibodies</td>
<td>4/18 CR</td>
<td>(27)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>1st remission</td>
<td>12/17 T-cell responses n.o.s 12/17 Id-specific antibodies</td>
<td>n.e.</td>
<td>(98)</td>
</tr>
<tr>
<td>Id-KLH + GM-CSF or IL-2</td>
<td>1st remission after HDCT and PBSCT</td>
<td>2/11 Id-specific T-cell proliferation 0/12</td>
<td>8/10 Id-specific positive skin test</td>
<td>(99)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>1st remission after HDCT and PBSCT</td>
<td>4/5 Id-specific T-cell cytokine release 1/5 Id-specific antibodies</td>
<td>2/11 CR</td>
<td>(100)</td>
</tr>
<tr>
<td>Id + GM-CSF</td>
<td>IgG MM</td>
<td>1/5 Id-specific T-cell proliferation 5/5 Id-specific antibodies</td>
<td>2/12 Id-specific M protein</td>
<td>(101,102)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>1st remission after HDCT and PBSCT</td>
<td>2/10 Id-specific T-cell proliferation</td>
<td>3/10 decrease M protein</td>
<td>(104)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>1st remission after HDCT and PBSCT</td>
<td>4/5 Id-specific T-cell cytokine release</td>
<td>3/17 CR, 2/17 PR</td>
<td>(105)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>1st remission after HDCT and PBSCT</td>
<td>5/5 Id-specific antibodies</td>
<td>1/5 decrease M protein</td>
<td>(106)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>1st remission after HDCT and PBSCT</td>
<td>4/26 Id-specific T-cell proliferation</td>
<td>8/21 decrease M protein</td>
<td>(30)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>IgG MM</td>
<td>5/6 Id-specific T-cell proliferation 3/6 Id-specific CTL↑ 4/5 Id-specific antibodies</td>
<td>1/6 decrease M protein</td>
<td>(32)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>Advanced pts</td>
<td>3/10 Id-specific antibodies 4/10 Id-specific T-cell cytokine release</td>
<td>1/10 decrease plasma cell infiltration in bone marrow</td>
<td>(107)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>Advanced pts</td>
<td>n.e.</td>
<td>6/42 decrease M protein</td>
<td>(108)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>Advanced pt</td>
<td>Id-specific T-cell proliferation Id-specific T-cell cytokine release Id-specific CTL</td>
<td>decrease M protein</td>
<td>(109)</td>
</tr>
<tr>
<td>Id-KLH-pulsed DCs + GM-CSF</td>
<td>Advanced pts</td>
<td>2/2 Id-specific T-cell proliferation 2/2 Id-specific T-cell cytokine release</td>
<td>0/2</td>
<td>(110)</td>
</tr>
</tbody>
</table>

CR, complete response; PR, partial response; CTLp, cytotoxic T lymphocytes precursor frequency; n.o.s, not otherwise specified; n.e., not evaluated; → followed by.

Table 2. Summary of recent Id-vaccine clinical trials in multiple myeloma.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Clinical setting</th>
<th>Immune responses</th>
<th>Antitumor effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id-KLH + GM-CSF or IL-2</td>
<td>1st remission after HDCT and PBSCT</td>
<td>2/11 Id-specific T-cell proliferation 0/12</td>
<td>8/10 Id-specific positive skin test</td>
<td>(99)</td>
</tr>
<tr>
<td>Id-KLH + GM-CSF</td>
<td>remission after HDCT and PBSCT</td>
<td>2/10 Id-specific antibodies 4/5 Id-specific T-cell cytokine release</td>
<td>n.e.</td>
<td>(100)</td>
</tr>
<tr>
<td>Id-KLH + GM-CSF</td>
<td>remission after HDCT and PBSCT</td>
<td>1/5 Id-specific antibodies 5/5 Id-specific antibodies</td>
<td>2/12 Id-specific M protein</td>
<td>(101,102)</td>
</tr>
<tr>
<td>Id + GM-CSF</td>
<td>IgG MM</td>
<td>1/5 Id-specific T-cell proliferation 5/5 Id-specific antibodies</td>
<td>3/10 decrease M protein</td>
<td>(104)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>1st remission after HDCT and PBSCT</td>
<td>2/10 Id-specific T-cell proliferation</td>
<td>3/17 CR, 2/17 PR</td>
<td>(105)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>1st remission after HDCT and PBSCT</td>
<td>4/5 Id-specific T-cell cytokine release</td>
<td>3/17 CR, 2/17 PR</td>
<td>(105)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>remission after HDCT and PBSCT</td>
<td>5/5 Id-specific antibodies</td>
<td>1/5 decrease M protein</td>
<td>(106)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>remission after HDCT and PBSCT</td>
<td>4/26 Id-specific T-cell proliferation</td>
<td>8/21 decrease M protein</td>
<td>(30)</td>
</tr>
<tr>
<td>Id-KLH-pulsed DCs</td>
<td>IgG MM</td>
<td>5/6 Id-specific T-cell proliferation 3/6 Id-specific CTL↑ 4/5 Id-specific antibodies</td>
<td>1/6 decrease M protein</td>
<td>(32)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>Advanced pts</td>
<td>3/10 Id-specific antibodies 4/10 Id-specific T-cell cytokine release</td>
<td>1/10 decrease plasma cell infiltration in bone marrow</td>
<td>(107)</td>
</tr>
<tr>
<td>Id-pulsed DCs (→Id-KLH)</td>
<td>Advanced pts</td>
<td>n.e.</td>
<td>6/42 decrease M protein</td>
<td>(108)</td>
</tr>
<tr>
<td>Id-KLH-pulsed DCs</td>
<td>Advanced pt</td>
<td>Id-specific T-cell proliferation Id-specific T-cell cytokine release Id-specific CTL</td>
<td>decrease M protein</td>
<td>(109)</td>
</tr>
<tr>
<td>Id-KLH-pulsed DCs + GM-CSF</td>
<td>Advanced pts</td>
<td>2/2 Id-specific T-cell proliferation 2/2 Id-specific T-cell cytokine release</td>
<td>0/2</td>
<td>(110)</td>
</tr>
</tbody>
</table>

CR, complete response; PR, partial response; CTLp, cytotoxic T lymphocytes precursor frequency; n.o.s, not otherwise specified; → followed by.

HDCT, high dose chemotherapy; PBSCT, peripheral blood stem cell transplantation; CTLp, cytotoxic T lymphocytes precursor frequency; CR, complete response; PR, partial response; n.o.s, not otherwise specified; → followed by.
majority of vaccinated patients raised various levels of anti-Id humoral and/or cellular responses and some had durable tumor regressions. Interestingly, unlike immunotherapy with idiotype protein, DC-based vaccine elicited Id-specific antibodies in only about one third of the patients treated, and this was not improved by the booster immunization with Ig-KLH protein vaccine. Moreover, the potency of DC + Id vaccine in this study was only slightly improved by incorporation of KLH, though it was essential in the preclinical experiments. Although it is difficult to compare results from this trial with data reported by others due to differences in the stage of measurable disease at the time of vaccination, treatment of patients in CR elicited comparable levels of disease-free survival with Id-KLH + GM-CSF protein vaccine. In MM, DC pulsed with Id-KLH also elicited potentially useful immunologic responses such as Id-specific T cell proliferation detected from 15% to as many as 83% patients. In the latter study, the response was associated with production of IFNγ in 2 out of 6 patients and an increase in CTL precursor frequency in 3 patients. However, a wider use of DC-based vaccines may not be feasible yet for a variety of reasons, as the DC field itself is under development and production of GMP grade autologous DCs for each patient is laborious and complex. Moreover, it is not completely clear which are the best DC subsets to use to induce optimal immune responses, since some DC subsets may induce tolerance rather than activation.

Id vaccination has been investigated so far mostly in the autologous setting. However, preliminary results suggest that this immunotherapeutic maneuver may have a therapeutic effect in the setting of allogeneic stem cell transplantation. In this field, exploitation of the potential antitumor effect of stem cell grafts relies on strategies for enhancing graft-versus-tumor effects without aggravating graft-versus-host disease (GVHD). One such strategy would be to selectively target an immune response against a defined TAA. The exquisite tumor specificity of Id makes it an ideal candidate antigen for donor immunization. Transfer of donor Id-specific T-cell immunity was detected at the time of allografting of Id-immune marrow. Release of high levels of T helper type 1 (Th1) cytokines in an MHC-restricted fashion in response to stimulation with recipients' myeloma cells was detected in two donors immunized with Id proteins obtained from their recipients. Thus, despite the limited number of patients tested, several important conclusions can be drawn which support the proof of a principle: first, it is possible to immunize healthy donors with a patient's Id; second, it is possible to transfer Id-specific T-cell immunity directly from an immunized donor to a recipient; third, the donor-derived T-cell responses are not blocked by the presence of circulating Id-antigen or by GVHD prophylaxis-induced immunosuppression. These results set the stage for an ongoing phase I/II clinical trial at the National Cancer Institute of donor immunization prior to allogeneic stem cell transplantation following a non-myeloablative conditioning regimen for MM. In the same clinical setting, to avoid any potential complications associated with immunization of healthy donors with tumor-derived products, in vitro priming of donor T-cells using Id-pulsed DCs may provide an alternative to in vivo donor immunization and allow the transfer of highly enriched populations of Id-specific T-cells from donor to recipient (tumor-specific donor lymphocyte infusion).

There are several lessons that can be drawn from these Id-vaccine clinical trials which can potentially serve as a model for cancer vaccine trial design in general. First, it is important to optimize the interpretation of immunologic, molecular, or clinical results by selecting a study population which is homogeneous with respect to underlying disease histology and the amount and type of prior therapy. Second, observations in both animal models and clinical studies suggest that vaccines may be more effective in the setting of MRD. Third, the use of vaccines targeting known tumor antigen(s) such as Id may have the methodological advantage over tumor cell-based vaccines of allowing the systematic analysis of vaccine-induced immunity in relation to clinical responses. It is critical to evaluate immunologic and clinical responses systematically by the uniform application of appropriate endpoints across the entire study population. Identification and monitoring of immune responses is one of the major challenges in the setting of antitumor vaccination. For example, the immunologic monitoring of CD8+ T-cell responses against autologous tumor targets, when feasible, has several advantages over the use of surrogate targets and should be established as a standard for future vaccine studies. Anti-Id antibodies have been shown to be important, but not essential for antitumor effects of the vaccine. Bendandi et al. reported that at least three patients achieved molecular remissions without a detectable antibody response, thus suggesting that a humoral response may not be required. The ability of patient's T lymphocytes to lyse autologous FL cells would suggest
that the tumor antigen (i.e. Id) is naturally processed and presented by FL cells. However, vaccinations with idiotype may lead to induction of T cell responses to other TAA expressed by malignant cells (antigen spreading) as a result of cross priming. Characterization of Id vaccine-induced responses, particularly T cell responses, is a challenging task that can be accomplished using various manipulations to enhance activity of APC in vitro and using more sensitive methods such as intracellular cytokine staining and ELISPOT assay. As regards the evaluation of antitumor effects, using a sensitive tumor marker or molecular probe to measure reduction or disappearance of subclinical tumor mass can be an effective alternative to clinical tumor response criteria. For example, the majority of FL patients carry a t(14,18) translocation of bcl-2 oncogene to the immunoglobulin heavy chain joining region (IgH). Therefore, PCR-based evaluation of bcl-2 specific major breakpoint cluster region (M BR) in the extracellular serum DNA to monitor MRD appears to be an ideal surrogate marker for clinical activity and vaccine efficacy.

Models for murine B cell malignancy to validate human idiotypic vaccines

Most murine tumor models use artificial tumor antigen, often immunogenic by itself. In contrast, syngeneic murine lymphomas and myelomas express clone-specific tumor Id, which is usually a non-immunogenic self-antigen. It is postulated that immunity elicited in these models using Id-vaccines would closely predict a future clinical outcome in humans. In concordance, data from recent clinical Id-vaccine trials also supported the reliability of these murine models. In fact, the ability of GM-CSF to enhance potency of Ig-KLH and activity of these murine models. In other clinical studies in syngeneic murine B-cell tumor models. Therefore, the vaccine’s initial design and its validation for future clinical trials are vigorously tested in murine models of B-cell malignancies of various genetic backgrounds. There are two ways to test vaccine formulation in mice - one way is to induce immunity prior to challenge with tumor cells (protection experiment), the other way is to treat non-immune naive mice bearing tumor cells with vaccine (therapy/eradication experiment). Although the importance of therapy to eradicate an established tumor is often over emphasized since it resembles the clinical situation, it is usually a challenging task by itself even if tumor cells grow slower in mice. For example, we reported for the first time that Id-vaccine can eradicate a slower growing established A20 lymphoma and induce antitumor immunity. Furthermore, an established tumor may be eradicated by activation of such cells as NK without eliciting antitumor immunity. However, the majority of Id vaccine reports are obtained from tumor protection experiments. Several different transplantable murine B cell tumors are used successfully to model immunotherapy strategies against human B cell malignancies. Most murine B-cell tumors are usually weakly immunogenic and lethal in syngeneic mice, and they closely mimic different types of human B-cell malignancies from mature, non-secreting B-cell lymphomas to Ig secreting myelomas. These include BCL1 and A31 B-cell splenic lymphomas, both of which express surface IgM, 5T33 myeloma, which predominantly secretes IgG2b, and MOPC-315 plasmacytoma, which secretes IgA. Our experience is mostly with the A20 and 38C-13 lymphomas. A20 is a BALB/c B-cell lymphoma line derived from a spontaneous reticulum cell neoplasm, extensively used in various tumor studies. These cells are IgG+, Ig- (with polyvalent anti-Ig), Ia+, Fc+, IgM-, IgA-, and complement receptor negative. A20 cells are tumorigenic in mice and have a generation time of 18 hours. When grown in Click's medium, these cells originally expressed very little surface IgG. T-cell factors and mitogens can induce these tumor cells to secrete IgM, which secretes IgG extracellularly. 38C-13 is a carcinogen-induced lymphoid tumor, originally isolated from a T-cell-depleted mouse of the C3H/eB strain. 38C-13 cells have features of the transformed counterpart of small B lymphocytes and grow well in culture using RPMI 10% FCS and 0.05 mM 2-ME. 38C-13 cells express surface IgM (little to no secreted IgM), are Thy-1-, Ia-, Fc-, IgA-, and are complement receptor negative.

Numerous strategies have been reported to reverse the weak immunogenicity of murine B-cell tumor-derived Ig and elicit anti-Id antibody (Ab) responses. High titers of anti-Id antibodies were elicited by Id immunizations together with a variety of immunologic adjuvants such as SAF, CFA, QS-21 or KLH. Although induction of cell-mediated responses is considered to be more important for immunotherapy, some B-cell tumors, particularly those which express predominantly surface-bound Ig, can be eradicated by the induction of humoral responses against tumor Id, with no detectable role of cellular immunity. For example,
it was often observed that anti-Id antibodies could protect mice from the challenge with B-cell lymphomas expressing surface Ig.43,50 In contrast, antitumor protection from other B-cell malignancies, such as A20, 5T33 and J L\textsubscript{µ}s, which often preferentially excrete their Ig, was dependent mostly on induction of cellular Id-mediated anti-tumor responses.7,12,51,52 However, there are only handful of examples which demonstrate a direct involvement of T-cells in Id-specific immunity, and traditional methods for assessment of cellular responses in Id vaccinated mice are inadequate because of low sensitivity.53 T-cell epitopes have been found on only a few tumor-derived Id, such as CD4 epitopes in \lambda-chain of MOPC-315 tumor.54 Moreover, no Id-specific CD8+ specific CTL epitopes have been identified, and no direct killing of tumor cells by CTL in vitro has been reported yet, although ample indirect evidence suggests that Id-vaccinations activated CD8+ effector cells.11,12,53 Recently, use of more sensitive ELISPOT assay revealed that mice immunized with syngeneic 38C-13 tumor-derived Ig-KLH emulsified in CFA showed a significant increase in the frequency of Id-specific IFN\textgamma-secreting T cells.53

Second generation of idiotypic vaccines: strategies and issues

Although proven effective in experimental models and in clinical trials, the traditional Id vaccine approach, which is based on the generation and culture of heterohybridomas, is complicated in view of clinical application by the need for large amounts of custom-made and individually tailored proteins that must be prepared and certified for each case within an appropriate time scale. Despite the fact that the prototypic Ig-KLH vaccine generates superb anti-Id Abs, this formulation does not induce efficient cell-mediated responses and protective antitumor immunity in every B-cell tumor model, as is the case for A20 lymphoma (Figure 2), which presumably is not affected by inhibitory effects of anti-Id Abs and ADCC (Biragyn, unpublished data). Therefore, new formulations of Id vaccines should be designed to streamline the production of these individualized vaccines and to optimally recruit appropriate effector cellular functions to elicit potent antitumor immunity. The second generation of Id-vaccines should induce both humoral and cellular arms of immune responses. Furthermore, a simpler vaccine production strategy would also enable to modify formulations at short notice to accommodate future treatments for vaccine-induced escape or mutant variants, observed in some murine B-cell lymphomas.55

The new generation of vaccines takes into account the fact that unique determinants of Ig are localized in two short regions designated as VH and VL. These fragments can be cloned from an individual malignant B-cell and expressed as scFv, which usually retains all the unique features of the parental tumor-derived Ig, not shared with other molecules.56 This is a relatively simple and straightforward procedure, yet it is often limited by the extent of oligonucleotide primer mismatch. Recombinant scFv and its fusion proteins are produced successfully in almost every expression system including bacteria, yeast, plants and mammalian cells,56,57 although various factors, such as proper protein folding and possible non-specific toxic effects on the host producer cells, may hamper a streamline production of the vaccine (Biragyn, personal communication). An alternative and much
A growing number of reports support the hypothesis that activation of innate immunity through pattern recognition receptors of evolutionary distant pathogens is essential for initiation of adaptive immunity. Moreover, optimal recognition of self-tumor antigens and induction of proinflammatory rather than tolerogenic responses may require activation of innate immunity by a danger signal. Engagement of pattern recognition receptors induces up-regulation of CD80 and CD86 co-stimulatory molecules and production of various proinflammatory mediators, such as cytokines and chemokines, to enable more potent adaptive immune responses. According to the danger model, vertebrates have evolved innate immune mechanisms, by which the immune system might distinguish dangerous, non-self antigens from non-dangerous, self antigens. Bacterial cell-wall components, unmethylated DNA with CpG motifs, toxins, etc are major activators of innate immunity. Consequently, an alert signal, fragment C of tetanus toxin (FrC), was successfully used to elicit Id-specific immunity. It was reported in two murine B-cell tumor models, A31 lymphoma which expresses surface IgM and ST33 myeloma which secretes IgG2b, that mice immunized with DNA construct expressing scFv fusion with FrC were protected from the challenge with syngeneic tumor. The potency of the DNA vaccine was recently further improved by using xenogeneic self-aggregating protein from potato X virus. The resulting vaccine, a self-aggregated sFv fusion protein, elicited an effector CD4+ T-cell-dependent protective response superior to that elicited by scFv-FrC. It is becoming apparent that effective antigen-specific immunity can be elicited by targeting antigens to antigen-presenting cells (APC) via ligands for cell surface receptors such as mannose receptor, FcR and DEC205, and that this enables internalization and processing of the antigen. We have further developed this idea by utilizing chemokine receptors to target scFv to APC. The trafficking of DC is regulated by differential expression of heterotrimeric G-protein-coupled seven-transmem-
brane-domain chemokine receptors. Immature DCs, which express high levels of endocytic receptors and exhibit potent antigen uptake capacity, express chemokine receptors such as CCR1, CCR2, CCR5, CCR6, CCR9 and CXCR4 to extravasate and enter peripheral sites. Upon maturation of DC, expression of these receptors is down-regulated, while that of other receptors, such as CCR7 is up-regulated, enabling MIP3β (ELC) and SLC to recruit mature DC in lymph nodes. Chemokines can be distinguished as inflammatory (inducible) or homeostatic (constitutive), based on their pathophysiological activities. Homeostatic chemokines are usually produced constitutively in discrete microenvironments and are involved in the maintenance of the physiological trafficking of immune cells. In contrast, inflammatory chemokines are expressed during infection or tissue damage by resident and infiltrated leukocytes. Recently, it has been suggested that some antimicrobial peptides of innate immunity, such as human β-defensin 2, participate in adaptive immune responses by acting directly on immature DC via binding with CCR6. Overall, defensins play a role in inflammation, wound repair, and regulation of specific immunity by inducing the expression of cytokines and chemokines, the production of histamine and enhancing antibody responses.

Therefore, we hypothesized that, perhaps, a general strategy for induction of effective adaptive immunity against weakly immunogenic tumor antigens may be to target in vivo the delivery of such antigens to receptors on professional APC such as DC. The proof of this concept has been reported recently using data obtained from two different B-cell lymphomas, 38C-13 and A20, which express surface IgM or secrete IgG2a, respectively. Utilizing various chemokines and defensins, we were able to demonstrate that scFv acquired the ability to bind to chemokine receptors and induced chemotactic responses, both in vitro and in vivo, when it was fused with chemokine. Moreover, mice immunized with scFv fused to chemokine (Figure 2) or defensin elicited anti-Id responses and protective antitumor immunity, and the vaccine did not require the use of any adjuvants (Figure 3). Our data also suggested that it was important that the vaccine targeted immature, but not mature DC. For example, constructs expressing scFv fusion proteins with SLC, a chemokine which binds to mature DC via CCR7, did not elicit any antitumor protection. In contrast, protective antitumor immunity was induced only in mice immunized with constructs expressing scFv fusion with proinflammatory chemokines, such as MIP-3α or β-defensin 2, both ligands for CCR6 expressed on immature, but not mature, DC. While both humoral and cellular immune responses were required for rejection of the more aggressive 38C-13 tumor that expresses IgM primarily on its surface, only cellular, but not humoral, immunity was needed for protection against A20 lymphoma, which largely secretes its idiotypic antigen. Overall, protection was significant, and it was superior to that of the prototype Ig-KLH protein vaccine. No survival was observed in control mice immunized with PBS or DNA constructs encoding fusion of defensin to an irrelevant antigen (pmDef3βMUC1T). Co-administration of competing Def3βligand abrogates immune response, suggesting that scFv was required to be delivered via chemo-attractant receptor to elicit protective immunity (pmDef3βscFv38/pmDef3βMUC1T).
The precise mechanism of the carrier activity of inflammatory chemokines and defensins remains to be elucidated. Delivery of chemokines to tumor cells, resulting in non-specific recruitment of effector cells, has been reported. However, we favor an entirely novel mechanism of triggering anti-tumor immunity, namely, that the chemokine moiety targeted APC for efficient receptor-mediated uptake and processing of scFv, breaking tolerance. The targeted antigen would be efficiently endocytosed by DC, since CXC and CC-chemokine receptors are known to be internalized after binding to ligand. In addition, we hypothesize that targeting with scFv fused to inflammatory chemokines induces activation of immature DC and production of a milieu of proinflammatory cytokines which directs adaptive immune responses. The most compelling data supporting this hypothesis are that mice immunized with control constructs expressing scFv fusion with a mutated form of MIP-3α, which carries a disrupted chemokine receptor binding site, and pro-defensin, the inactive form of defensin unable to chemo-attract immature DC via CCR6, were not protected. Similarly, no immunity was elicited when mice were immunized with DNA expressing a free unlinked mixture of scFv and chemo-attractant, suggesting that just cell infiltration to the site of vaccine without specific targeting was not sufficient to break unresponsiveness to scFv.

In summary, a successful antitumor immunity requires induction of both arms of the immune response, humoral and cellular. The extent and presence of T-cell epitopes on Id itself is still unclear, with a few exceptions such as CD4 epitope found on the light chain of Id2 MOPC-315 plasmacytoma. Most idiotype protein and DNA vaccine formulations reported to date elicited exclusively antibody responses, with undetectable CD8+ T-cells. Therefore, strategies which elicit enhanced protective antitumor immunity dependent upon effector CD4+ and CD8+ T-cells, for example co-administration of low doses of GM-CSF with Ig-KLH protein vaccine and use of second generation vaccines based on the self-aggregating properties of potato X virus protein, or on direct targeting of immature DC in vivo with fusion constructs with chemokines, appear most promising for translation into clinical trials.

Conclusions

Substantial progress has been achieved in the development of cancer vaccines, particularly idiotype vaccines. It is now clear that it is possible to elicit both humoral and cellular immune responses against a self-tumor antigen such as Id and induce antitumor immunity. These results have set the stage for a phase III clinical trial in FL already underway to answer the question of whether Id vaccines produce clinical benefit. Traditional formulations such as Ig-KLH + GM-CSF are becoming a standard against which new vaccine formulations for B-cell malignancies must be compared (Table 3). The second generation of Id vaccines take advantage of molecular cloning techniques and novel delivery systems, and tests in pre-clinical models demonstrate their superior potency over prototypic protein vaccine. The comparison, however, has yet to be performed in the clinical setting. Moreover, novel vaccine formulations are simpler to produce, particularly naked DNA vaccines, and they utilize fusions with various immunologic danger signals from xenogeneic foreign viral and bacterial antigens to activate DC-mediated primary immune responses to a weakly immunogenic Id. Methods which deliver/recruit in vivo Id-antigen directly to immature DC, such as via chemokine receptor engagement, may be an effective strategy for eliciting both CD4+ and CD8+ T-cell immune responses against self-tumor antigens.

Table 3. Comparison of different Id vaccine formulations.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Production time</th>
<th>Cost of production</th>
<th>Potency compared to Id-KLH + GM-CSF</th>
<th>Phase of clinical development</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id-KLH + GM-CSF</td>
<td>3-6 months</td>
<td>Expensive</td>
<td>N.D.</td>
<td>III</td>
<td>(17)</td>
</tr>
<tr>
<td>Liposomal Id/IL-2</td>
<td>3-6 months</td>
<td>Expensive</td>
<td>></td>
<td>I</td>
<td>(18)</td>
</tr>
<tr>
<td>Id-pulsed DCs</td>
<td>3-6 months</td>
<td>Expensive</td>
<td>N.A.</td>
<td>I/II</td>
<td>(27)</td>
</tr>
<tr>
<td>ScFv-chemokine DNA fusion</td>
<td>1-2 weeks</td>
<td>Cheap</td>
<td>≥</td>
<td>Preclinical</td>
<td>(11-12)</td>
</tr>
</tbody>
</table>

Cost of production is compared with traditional prototypic hybridoma-derived Id protein vaccine. Potency is in relationship to Ig-KLH vaccine as evaluated in syngeneic murine models of B-cell tumors. Abbreviations: N.A. = data not available; N.D = not applicable; ≥ superior.
References

77. Fraser IP, Kozel H, Ezekowitz RA. The serum mannose-bind-
ing protein and the macrophage mannose receptor are pat-
tern recognition molecules that link innate and adaptive

87. Moser B, Loetscher P. Lymphocyte traffic control by chemo-

86. Tozzani S, Allavena P, D’ Amico G, Luini W, Bianchi G, Katau-
ro M, et al. Differential regulation of chemokine receptors
during dendritic cell maturation: a model for their traffick-

85. Lillard JW, Boyeka PN, Chertov O, Oppenheim JJ, McGhee
JR. Mechanisms for induction of acquired host immunity by
neutrophil peptide defensins. Proc Natl Acad Sci USA 1999;
96:651-6.

84. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-
Yahia S, et al. Selective recruitment of immature and
mature dendritic cells by distinct chemokines expressed in

83. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D,
Lanzavecchia A, Sallusto F. The instructive role of dendrit-
cells on T cell responses: lineages, plasticity and kinetics.

82. Lanzavecchia A, Sallusto F. The instructive role of dendrit-
cells on T cell responses: lineages, plasticity and kinetics.

selective recruitment of immature and mature dendritic
cells by distinct chemokines expressed in different anatomic

80. Colaco CA. Towards a unified theory of immunity: dendrit-
cell-based immunotherapy in multiple myeloma. Blood
1998; 94 Suppl 1:268-78.

79. Mozes B, Loetscher P. Lymphocyte traffic control by chemo-

78. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA,
el al. Tumor-specific, cytotoxic T-lymphocyte response after
idiotypic vaccination in B-cell non-Hodgkin’s lymphoma.

77. Fraser IP, Kozel H, Ezekowitz RA. The serum mannose-bind-
ing protein and the macrophage mannose receptor are pat-
tern recognition molecules that link innate and adaptive

76. Siegal FP, Kadokari N, Shodell M, Fitzgerald-Bocarsly PA,
Shah K, Ho S, et al. The nature of the principal type 1 inter-
feron-producing cells in human blood. Science 1999; 284:
1835-7.

75. Lauritzsen GF, Bogen B. The role of idiotype-specific, CD4 +
T cells in tumor resistance against major histocompatibili-
ty complex class II molecule negative plasmacytoma cells.

Tumor-specific, cytotoxic T-lymphocyte response after
idiotypic vaccination for B-cell, non-Hodgkin’s lymphoma.

al. Anti-idiotypic vaccination in the treatment of low-grade

72. Hs u FJ, Komarovskaya M, Song L, Do yon AG. A clinical tri-
al of sequential dendritic cell and protein/adjuvant idiotype
vaccine in patients with follicular lymphoma. Blood 2001;
98 Suppl 1:466[abstract].

71. Massaia M, Borrione P, Battaglio S, Marianni S, Beggiato E,
Napoli P, et al. Idiotype vaccination in human myeloma:
generation of tumor-specific immune responses after high-

70. Schuetze SM, Smith BE, Bensinger WI, Appelbaum FR, Mal-
oney DG. Myeloma idiotype vaccination post autologous
or autologous transplant can amplify idiotype-specific cellular

69. Murashi NC, Desikan RK, Siegal D. Preliminary report of clin-
ical efficacy of patient (pt) specific vaccination using puri-
fied idiotype protein in myeloma. Blood 1999; 94 Suppl
1:704[abstract].

68. Kwak LW, Stenman LA, Jagnnath S, Siegal D, Munsch N, Bar-
logie B. T-cell responses elicited by immunization of mul-
tiple myeloma patients with idiotype protein plus GM-CSF
in remission after autologous transplantation (PSCT). Blood
1997; 90 Suppl 1:579[abstract].

67. Osterborg A, Yi Q, Henrickson L, Fagerberg J, Bergenbrant S,
Jeddi-Tehrani M, et al. Idiotype immunization combined
with granulocyte-macrophage colony-stimulating factor in
myeloma patients induced type I, major histocompatibility
91:2459-66.

66. Reichardt VL, Milazzo C, Brugger W, Einsele H, Kanz L,
Brossart P. Specific immunotherapy of multiple myeloma
patients using idiotype pulsed serum-free generated dendrit-

65. Lacy MQ, Wettstein P, Gertz MA. Dendritic cell-based idi-
typic vaccination in post transplant multiple myeloma.

64. Yi Q, Desikan R, Barlogie B, Munsch N. Optimizing dendrit-
cell-based immunotherapy in multiple myeloma. Blood
2001; 98 Suppl 1:374[abstract].

63. Titzer S, Christensen O, Manzke O, Tesch H, Wolf J,
Emmerich B, et al. Vaccination of multiple myeloma
patients with idiotype-pulsed dendritic cells. Immunologi-

62. MacKenzie M, Peshwa MV, Wun T. Immunotherapy of
advanced refractory multiple myeloma with idiotype-pulsed dendritic cells (mylovenge). Blood 2000; 96 Suppl
1:166[abstract].

61. Wen YJ, Ling M, Bailey-Wood R, Lim SH. Idiotype protein-
pulsed adherent peripheral blood mononuclear cell-derived
dendritic cells prime immune system in multiple myeloma.

60. Cull G, Durrant L, Stainer C, Haynes A, Russell N. Genera-
tion of anti-idotype immune responses following vaccina-
tion with idiotype-protein pulsed dendritic cells in myelo-

1001

Immunotherapy of B-cell malignancies