

Table 1. WHO criteria for polycythemia vera (PV)*.

<table>
<thead>
<tr>
<th>B1. Thrombocytosis >400×10^9/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2. WBC >12×10^9/L</td>
</tr>
<tr>
<td>B3. Bone marrow biopsy showing pancytopenia with prominent erythroid and megakaryocytic proliferation</td>
</tr>
<tr>
<td>B4. Low serum erythropoietin levels</td>
</tr>
</tbody>
</table>

Diagnostic use of A and B criteria
Polycythemia vera can be diagnosed when:
- A1 + A2 and any other category A criterion is present.
- A1 + A2 and any two of category B criteria are present.

*Or >99th percentile of method-specific reference range for age, sex and altitude of residence.

Unlike chronic myeloid leukemia, PV lacks a molecular marker so far. In the last few years, there has been considerable interest in the overexpression of neutrophil PRV-1 mRNA as a specific molecular marker of PV. PRV-1 and NBI are alleles of the polymorphic gene CD177, which belongs to the Ly-6/uPAR superfamily, and their coding regions differ at only 4 nucleotides. We have recently shown that an elevated neutrophil CD177 mRNA level is not a specific marker for the diagnosis of either PV or CMD. From a clinical viewpoint, neutrophil CD177 mRNA overexpression is rather a marker of abnormal neutrophil production and/or release in patients with CMD. Acquired uniparental disomy resulting in loss of heterozygosity of chromosome 9p may represent the most frequent chromosomal aberration in PV, but is found in only one third of patients.

The diagnosis of PV is still based on combinations of clinical and laboratory parameters: Table 1 reports the WHO criteria. Serum erythropoietin is considered a B category criterion, i.e., a minor criterion. However, the role of serum erythropoietin appears to be equivocal in this classification, since criterion A2 includes: no elevation of erythropoietin (Epo) due to hypoxia (arterial pO2 <92%), high oxygen affinity hemoglobin, truncated Epo receptor or inappropriate Epo production by tumor.
duction associated with the remaining disorders is to assay serum erythropoietin itself (en passant, polycythemia due to truncated Epo receptor is associated with normal Epo production and more efficient signal transduction). Thus, serum erythropoietin concentration appears to have a dual role within the WHO criteria for PV, behaving as both A2 and B4 criteria. Pathophysiology is important not only for understanding the pathogenesis of hematologic disorders but also for diagnosing them. Table 2 reports the main conditions associated with erythrocytosis and the serum erythropoietin levels found in these conditions. A quick examination of Table 2 clearly shows the fundamental importance of serum erythropoietin for the differential diagnosis of erythrocytosis and for a diagnosis of polycythemia vera. In this issue of Haematologica, Mossuz and co-workers report the results of a multicenter study performed by a collaborative group of French hematologists who have been working for years on new diagnostic approaches to PV. In this work, their objective was to statistically validate the utility of serum Epo for diagnosis of PV by using a standardized commercial ELISA kit that gives reliable, reproducible results whatever the Epo level in serum. Their results clearly show that serum Epo level provides a reliable and accurate biological criterion that by itself can allow the definitive diagnosis of PV in 2/3 of patients. This indicates that the serum Epo assay should become a first-intention test in the work-up of absolute erythrocytosis and a major diagnostic criterion for polycythemia vera.

Mario Cazzola, M.D.
University of Pavia Medical School,
Division of Hematology, IRCCS Policlinico S. Matteo
27100 Pavia, Italy
E-mail: mario.cazzola@unipv.it

References