Early down-regulation of Bcl-xL expression during megakaryocytic differentiation of thrombopoietin-induced CD34+ bone marrow cells in essential thrombocythemia

LEI ZHANG
HUI ZHAO
AIHONG SUN
SHIHONG LU
BIN LIU
FENGWU TANG
YI FENG
LIHUA ZHAO
RENCHI YANG
ZHONG CHAO HAN

Background and Objectives. Essential thrombocythemia (ET) is a chronic myeloproliferative disorder with abnormal megakaryocyte/platelet production. Recent studies have found that Bcl-xL, as a member of the bcl-2 family of proteins that inhibit apoptosis, is essential in megakaryocytic differentiation. In this study the expression of Bcl-xL was evaluated during megakaryocytic differentiation in ET patients.

Design and Methods. To study the role of Bcl-xL in megakaryocyte differentiation, we evaluated the effect of small interfering RNA (siRNA) on the expression of Bcl-xL. CD34+ cells from patients with ET, chronic myeloid leukemia (CML), polycythemia vera (PV) and normal individuals were cultured in serum-free medium supplemented with thrombopoietin (TPO). Immunocytochemical staining and flow cytometric analysis were used to evaluate the Bcl-xL expression during megakaryocytic differentiation of CD34+ cells.

Results. When exposed to si-Bcl-xL, the percentage of K562 cells induced into megakaryocytes in 72 hours was lower than the corresponding percentage of control cells. CD41a+ cells from the three groups of patients and the control group were cultured. At day 10, the percentage of Bcl-xL− cells in CD41a+ cells from ET patients was 61.0±28.1%, which was significantly higher than that from patients with CML (2.5±20.9%), PV (33.6±10.0%) or control subjects (15.1±13.0%).

Interpretation and Conclusions. These results demonstrate that Bcl-xL is down-regulated early during in vitro differentiation of megakaryocytes from ET patients; this might reflect an early entry of megakaryocytes into a degenerating mature stage.

Key words: essential thrombocythemia, megakaryocyte, Bcl-xL, apoptosis.
L. Zhang et al.

Platelet differentiation of ET patients, we studied the role of Bcl-xL in the differentiation of megakaryocytes using small interfering RNA (siRNA) and examined the expression of Bcl-xL in megakaryocytes derived from CD34+ bone marrow cells of ET patients by immunocytochemical staining and flow cytometric analysis.

Design and Methods

Patients

Eleven patients with ET, 7 patients with polycythemia vera (PV), 9 patients with chronic myeloid leukemia (CML) and 8 normal individuals were studied. The diagnosis of ET was based on the following criteria: platelet count ≥ 600,000/µL; hematocrit <40%, or normal red blood cell (RBC) mass (males <36 mL/kg, females <32 mL/kg); stainable iron in marrow or normal serum ferritin or normal RBC mean corpuscular volume; absence of Philadelphia chromosome or bcr/abl gene rearrangement; none or less than 1/3 of the marrow biopsy showing collagen fibrosis with neither marked splenomegaly nor a leukoerythroblastic reaction; no cytogenetic or morphologic evidence of a myelodysplastic syndrome; and no cause for reactive thrombocytosis.

The diagnoses of PV and CML were made according to Goldman and Spivak. All CML patients and 4 PV patients had high platelet counts. The clinical and laboratory characteristics of the subjects are shown in Table 1.

Cell line and culture

K562 cell lines were routinely maintained in RPMI 1640 medium (GIBCO, Grand Island, NY, USA) containing 10% fetal calf serum, 100 units/mL penicillin, and 100 µg/mL streptomycin at 37° in a humidified atmosphere containing 5% CO₂. The cells were seeded at an initial concentration of 2×10⁵ cells/mL in DF12 medium (GIBCO) containing 1% fetal calf serum and grown in the presence of 50nM phorbol 12,13 dibutyrate (PDBu) (Sigma, USA). To assess megakaryocytic differentiation, cell surface expression of CD61 was measured by flow cytometry every 24 hours for 72 hours.

siRNA synthesis and transfection

siRNA was synthesized using the procedure described by Wilda. The target sequence homologous to nt 48-69 of the Bcl-xL mRNA sequence (GenBank accession number Z23115) was chosen (the target sequence: aagagaatcactaaccagaga, sense strand siRNA: gagaaucacuaaccagagatt, antisense strand siRNA: ucucugguauagauucctt). The siRNA were prepared using the Silencer™ siRNA Construction Kit (Ambion, Austin,TX, USA) according to the instruction manual. To control the specificity of knockdown experiments, another siRNA duplex with one base pair mutated was also synthesized as a control. The siRNA duplexes were transfected according to the recommended procedure by using the Oligofectamine Reagent (Invitrogen Life Technologies, Carlsbad, CA, USA). The cells were seeded at an initial concentration of 2×10⁵ cells/mL in serum-free medium (Stemcell Technologies; USA) and 50nM PDBu (Sigma, USA) was added at the same time as transfection for differentiation induction. Megakaryocytic differentiation and apoptosis was assessed by the expression of CD61 every 24 hours for 72 hours after transfection.

Reverse transcription-polymerase chain reaction (RT-PCR) analysis

Total RNA was isolated from siRNA-treated cells and

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients with ET (n=11)</th>
<th>Patients with CML (n=9)</th>
<th>Patients with PV (n=7)</th>
<th>Normal subjects (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Median: 49.0</td>
<td>42</td>
<td>65</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Range: 20-61</td>
<td>17-67</td>
<td>49-74</td>
<td>16-53</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>4/7</td>
<td>2/7</td>
<td>4/3</td>
<td>3/5</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>Median: 138</td>
<td>111</td>
<td>194</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Range: 105-166</td>
<td>74-131</td>
<td>150-234</td>
<td>110-157</td>
</tr>
<tr>
<td>Leukocytes (×10⁹/L)</td>
<td>Median: 7.0</td>
<td>22.9</td>
<td>7.39</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>Range: 3.3-18.3</td>
<td>18.3-213.0</td>
<td>3.09-22.4</td>
<td>4.81-11.23</td>
</tr>
<tr>
<td>Platelets (×10⁹/L)</td>
<td>Median: 744</td>
<td>900</td>
<td>363</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>Range: 624-2430</td>
<td>597-2022</td>
<td>134-1025</td>
<td>200-349</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>4/11</td>
<td>5/9</td>
<td>3/7</td>
<td>0</td>
</tr>
<tr>
<td>BM studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM hyperplasia</td>
<td>8/11</td>
<td>9/9</td>
<td>6/7</td>
<td>-</td>
</tr>
<tr>
<td>Megakaryocytic hyperplasia</td>
<td>10/11</td>
<td>9/9</td>
<td>4/7</td>
<td>-</td>
</tr>
<tr>
<td>Bone marrow fibrosis ≤ 1/3</td>
<td>5/11</td>
<td>3/9</td>
<td>3/9</td>
<td>-</td>
</tr>
<tr>
<td>Therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>6/11</td>
<td>2/9</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Hydroxyurea</td>
<td>8/11</td>
<td>9/9</td>
<td>5/7</td>
<td>-</td>
</tr>
<tr>
<td>α-interferon</td>
<td>4/11</td>
<td>1/9</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of the patients and control subjects. *ET denotes essential thrombocythemia; CML, chronic myeloid leukemia; PV, polycythemia vera.
control group cells (1×10^4) by using TRIzol reagent (Invitrogen Life Technologies, Carlsbad, USA) every 24 hours for 72 hours. The reverse transcription reactions were done using Superscript First-Strand Synthesis System (Invitrogen Life Technologies) following the manufacturer's procedure. The complementary DNA generated was amplified with primers specific for human Bcl-xL (5'-ggagctggtggtgacttc-3', 5'-caaggctctaggtggt-3') and GAPDH (primer: 5'-acccactcctccacctttg-3', 5'-gctgtagccaaattcgttg-3') and GAPDH were run on a 2% agarose gel, and stained with ethidium bromide.

Purification of bone marrow CD34+ cells
Ten to fifteen milliliters of bone marrow were obtained from patients and healthy donors after informed consent. Mononuclear cells were isolated from bone marrow using Ficoll-Hypaque (density, 1.077) (Union Stem Cell & Gene Engineering Company; China) density centrifugation. After two cycles of plastic adherence for 60 min, the cells were washed and suspended in phosphate-buffered saline (PBS, pH 7.4) containing 0.1% bovine serum albumin (BSA). The CD34+ cells were positively isolated using anti-CD34 monoclonal antibody conjugated beads (Miltenyi Biotech; Germany) by the MiniMACS system (Miltenyi Biotech). The purity of the selected population was verified by flow cytometry using an anti-human CD34 antibody conjugated with fluorescein isothiocyanate (FITC; Becton Dickinson USA). Purity was consistently more than 95%. The numbers of isolated mononuclear cells and CD34+ cells were counted and the percentage of CD34+ cells in mononuclear cells was calculated.

Isolated CD34+ cells cultures
The CD34+ cells were cultured at a density of 5.0×10^4 cells/mL in serum-free medium (Stemcell Technologies; USA) in 24-well plates. Cultures were stimulated with only human recombinant TPO (100ng/mL) kindly provided by Kirin Pharmacuetic Division (Japan). Cells cultured for up to 10 days were harvested for immunocytochemical staining and flow-cytometric analysis.

Immunocytochemical staining
Cells cultured for 10 days in serum-free culture with 100ng/mL TPO were cytocentrifuged onto microscope slides (1×10^5 cells slide), fixed in cold acetone, and stained with mouse anti-human Bcl-xL monoclonal antibody (SouthernBiotech USA). Bcl-xL was detected using a LSAB (Labeled Strept-Avidin-Biotin) kit (Zymed Laboratories, Inc. USA), with dianinobenzidine as a chromogen.

Cell labeling and flow cytometric analysis
Preparations of 2×10^5 mononuclear cells isolated from bone marrow were analyzed by flow cytometry Bcl-xL expression. Cells fixed in 1% paraformaldehyde phosphate-buffered saline for 20 minutes on ice and permeablized with 0.1% saponin (Sigma; USA) for 1 hour at 20°C were washed and incubated with FITC-conjugated mouse anti-human Bcl-xL (Southern-Biotech; USA) for 30 minutes at 4°C. The cultured CD34+ cells were phenotyped for PE-CD41a and FITC-Bcl-xL at day 10 by flow cytometry using a double-staining method. Collected cells were incubated with PE-conjugated mouse anti-human CD41a (Becton-Dickinson; USA) and labeled with the same method as above. The labeled cells were resuspended after washing and analyzed within two hours using a FACScan flow cytometer (Becton-Dickinson; USA). Transfected K562 cells and control group cells were collected every 24 hours for 72 hours, and the level of apoptosis was assessed using combined FITC-annexin V and propidium iodide (PI) staining (Becton-Dickinson; USA) following the manufacturer's specifications. Binding of FITC-annexin V and PI was visualized on a FACScan flow cytometer (Becton-Dickinson; USA).

Statistical analysis
Student's t test was used to compare data from the ET patients with those of the other groups. The level of statistical significance was set at 0.05.

Results
Reduction of CD61+ cells by siRNA during differentiation induction of K562 cells
To investigate the function of Bcl-xL in megakaryocytic lineage cells, we examined the change of CD61+ cells during K562 cell differentiation when exposed to si-Bcl-xL. When K562 cells were cultured with 50nM PDBu, the percentage of CD61+ cells rapidly increased from 0.75±0.12% to 67.4±1.7% in 24 hours and maintained a high level of positivity for 72 hours. After exposure to si-Bcl-xL, the percentage of CD61+ cells increased only slightly from 0.40±0.87% to 8.6±0.31% in 24 hours, and to 35.3% in 72 hours (Figure 1).

Meanwhile, we determined Bcl-xL mRNA and protein expression during differentiation induction of K562 cells transfected by si-Bcl-xL. After transfection, the expression of Bcl-xL mRNA was assayed by RT-PCR every 24 hours for 72 hours. The Bcl-xL transcription of transfected K562 cells was significantly less than that of the control group at all times (Figure 2A). To examine whether the Bcl-xL protein was silenced correspondingly, its expression was measured by flow cytometry at the same time points after transfection and found to be sig-
Apoptosis of transfected cells was measured at the same time. The percentage of apoptosis in the control group was 1.3±0.1%, 15.5±1.2%, 20.2±2.3% and 22.1±3.4% at 0, 24, 48 and 72 hours, respectively; the corresponding percentages for the transfected cells were 1.2±0.2%, 19.3±1.4%, 25.5±2.5%, and 27.5±2.6%, respectively, being slightly higher than in the control group.
Isolation and culture of CD34+ cells

The percentage of CD34+ cells sorted from bone marrow mononuclear cells of patients with ET, CML, PV and normal subject was 1.8±1.2%, 2.8±2.1%, 1.7±1.8 and 1.5±1.2%, respectively. There was no significant difference between ET and the other groups. After 10 days of liquid culture, the number of cells from ET, CML, PV and the normal group increased by 6.9±1.6, 9.5±2.6, 6.7±3.8 and 2.6±1.1 fold, respectively.

Expression of Bcl-xL in immature and mature megakaryocytes

Megakaryocyte apoptosis and platelet formation are presumably two concurrent and correlated events in healthy physiology. To explore the expression of Bcl-xL in megakaryocytes in different phases, the CD34+ cells cultured in the presence of TPO for 10 days were stained for expression of Bcl-xL using an immunocytochemical technique. A strong expression of Bcl-xL was detected in immature megakaryocytes (Figure 3A). The expression of Bcl-xL was obviously decreased in degenerating mature megakaryocytes (Figure 3B).

Expression of Bcl-xL in marrow mononuclear cells and CD41a+ cells from CD34+ cells induced by TPO

The percentage of Bcl-xL+ cells in mononuclear cells of bone marrow of patients with ET, CML, PV and normal subject was 45.6±26.7%, 62.3±22.8%, 53.1±19.3% and 40.4±17.1%, respectively. The Bcl-xL expression in patients with ET was similar to that in normal controls and lower than that in patients with PV or CML, but without the differences being statistically significant (Table 2). CD41a is a specific marker for megakaryocytes. We found that the percentage of CD41a+ cells after 10 days in serum-free culture with 100 ng/mL TPO was 25.9±10.3% for ET, 31.5±9.8% for CML, 34.6±22.4% for PV and 35.0±17.1% for control subjects. The percentage of CD41a+ cells was lower in ET patients than in the other groups, but the differences were not statistically significant. The percentage of Bcl-xL+ cells among CD41a+ cells of patients with ET was 61.0±28.1%, which was significantly higher than that of patients with CML (32.5±20.9%), PV (33.6±10.0%) and particularly the control subjects (15.1±13.0%) (Figure 4). The percentage of Bcl-xL− cells in CD41a+ cells was 77.0±16.3% in 3 ET patients without prior treatment, 62.2±28.5% in 6 ET patients receiving aspirin, 75.5±13.6% in 8 ET patients receiving hydroxyurea and 56.1±35.7% in 3 ET

Figure 3. Immunocytochemical analysis of Bcl-xL expression in megakaryocytes. At day 10 of culture in the presence of TPO, expression of Bcl-xL was analyzed by an immunocytochemical procedure using a mouse antibody against human Bcl-xL. A strong expression of Bcl-xL in immature megakaryocytes (A) and decreased expression of Bcl-xL in degenerating mature megakaryocyte (B) was shown. Original magnification x200.

Figure 4. The percentage of Bcl-xL-negative cells in total CD41a positive cells. Mean (±SD) percentage of Bcl-xL-negative cells in total CD41a+ cells from induced CD34+ cells isolated from patients with ET, CML, PV and normal subjects in serum-free medium with TPO and cultured for 10 days. The results were obtained by flow cytometry.
patients receiving α-interferon. Figure 5 shows representative flow cytometric data.

Discussion

At present the pathological mechanisms underlying ET are not well established. Exploring the molecular alterations should improve our understanding of ET. We evaluated the expression of Bcl-xL during megakaryocytic differentiation of cells from ET patients.

Recent studies showed that apoptosis occurred predominantly in mature megakaryocytes rather than in immature megakaryoblasts. The kinetics of platelet release into culture supernatants correspond to the onset of apoptosis in these cells.37 Thus, platelet formation may be the consequence of apoptotic activation of megakaryocytes. Bcl-xL, BAD and BAX are members of proapoptotic bcl-2 family of proteins. Sanz et al.24 found that expression of Bcl-xL decreased in hematopoietic progenitor cells induced to undergo apoptosis while the expression of BAD and BAX remained unchanged. The expression of bcl-2 family members was further studied in megakaryocytes at various stages of differentiation. Sanz et al. reported that Bcl-xL expression increased during the course of differentiation in megakaryocytes derived from cord blood CD34+ cells induced by TPO and in cells of the UT7 megakaryoblastic line induced by phorbol 12-myristate 13-acetate (PMA), while the expression of BAD and BAX remained unchanged at all culture times in a UT7 cell line similarly induced.17 According to Sanz, senescent megakaryocytes do not express Bcl-xL, perhaps because most of the Bcl-xL protein has already been released from the platelets leaving the senescent megakaryocytes with no detectable Bcl-xL protein. Other investigators also found up-regulation of Bcl-xL expression during megakaryocyte differentiation of K562 cells induced by PMA.16 It was shown that platelet counts dropped by 85% in mice after inactivation of Bcl-xL.

Upon cell culture in vitro, the rate of apoptosis in the mutant cells was significantly increased, suggesting

Table 2. The expression Bcl-xL in CD41a+ cells after 10 days of culture.

<table>
<thead>
<tr>
<th></th>
<th>CD41a+ cells (%)</th>
<th>CD41a+/Bcl-xL cells (%)</th>
<th>The percentage of Bcl-xL cells total CD41a+cells (%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Median</td>
<td>Mean</td>
<td>Range</td>
</tr>
<tr>
<td>ET</td>
<td>11</td>
<td>25.1</td>
<td>25.9</td>
<td>12.0-49.7</td>
</tr>
<tr>
<td>CML</td>
<td>9</td>
<td>32.8</td>
<td>31.5</td>
<td>19.0-44.6</td>
</tr>
<tr>
<td>PV</td>
<td>7</td>
<td>34.9</td>
<td>34.6</td>
<td>7.0-66.2</td>
</tr>
<tr>
<td>Normal subjects</td>
<td>8</td>
<td>38.0</td>
<td>35.0</td>
<td>8.1-55.8</td>
</tr>
</tbody>
</table>

ET denotes essential thrombocythemia; CML, chronic myeloid leukemia; PV, polycythemia vera. The difference between ET and the other three groups (p<0.05), as derived by Student’s t test.
that Bcl-x deletion causes a defect in megakaryocyte maturation that prevents platelet release. One study of transgenic mice over expressing Bcl-x gene in megakaryocytes indicates that dysregulated, high-level expression of Bcl-x impairs the ability of the cells to fragment into platelets.

In the present study, we found that although cell apoptosis increased after RNA interference, the magnitude of the increase in the percentage of apoptosis of transfected cells was smaller than the decrease in the percentage of CD61+ cells, suggesting that decreased expression of Bcl-x mRNA and protein could lead to a reduction of CD61+ K562 cells during differentiation induction when exposed to si-Bcl-x. We also observed strong expression of Bcl-x in immature megakaryocytes and an obviously decreased expression in degenerating mature megakaryocytes. These results suggest that increased Bcl-x expression might be essential to megakaryocyte maturation. The down-regulation of Bcl-x in mature megakaryocytes may be crucial to platelet formation.

Osada et al. reported that mature megakaryocytes lose their ability to respond to TPO. Unlike immature megakaryocytes, whose viability depends on the presence of TPO, late-stage mature megakaryocytes undergo apoptosis even if maintained with a sufficient amount of TPO and fresh culture medium. This suggests that mature megakaryocytes undergo spontaneous apoptosis. Down-regulation of the anti-apoptotic protein Bcl-x in late-stage megakaryocytes presumably triggers this apoptosis of mature megakaryocytes, resulting in the formation of platelets.

In the present study, we found that the percentage of CD34+ cells in bone marrow of ET patients was not significantly different from that in normal subjects. The expression of anti-apoptotic Bcl-x protein in bone marrow mononuclear cells of patients with ET was similar to that of normal subjects but lower than that of patients with CML or PV. After 10 days of culture, the percentage of Bcl-x- cells in total CD41a+ cells of ET patients was much higher than that of other groups. Because Bcl-x- megakaryocytes possibly represent late-stage mature megakaryocytes, it is reasonable to believe that the accelerated maturation of megakaryocytes derived from CD34+ cells isolated from patients with ET. More late-stage mature megakaryocytes fragmenting into platelets might explain why the percentage of CD41a+ cells is slightly lower from ET patients than from normal controls after 10 days of culture. It has been shown that progenitor cells in ET are hypersensitive to TPO, leading to a more rapid differentiation of CD34+ cells into megakaryocytes. However, mutations of the gene for the c-mpl receptor, the receptor for thrombopoietin, were not detected and the number and function of platelet thrombopoietin receptors are markedly decreased in patients with essential thrombocytopenia.

In conclusion, we demonstrate for the first time that in ET the anti-apoptotic Bcl-x protein is down-regulated early during megakaryocytic culture in vitro in serum-free medium with TPO. Our data suggest that dysregulation of Bcl-x expression may be responsible, at least in part, for the overproduction of megakaryocytes and platelets.

LZ did the experiments including cell cultures, FACS manipulation, data collection and analysis, and prepared the manuscript. HZ and AS purified the bone marrow CD34+ cells and established the cell cultures. SL and BL did the immunocytochemical staining of megakaryocytes. FT, YF and LZ participated in the design of siRNA synthesis and transfection. RF and ZCH contributed to the concept and design of the study, revised it, gave final approval, obtained funding and provided administrative support. All authors were involved in the revision of the manuscript and have approved the final version of the manuscript. The authors are listed in an order based on the contributions they made to the experiments. The authors reported no potential conflicts of interest.

The authors would like to thank Prof. Man-Chiu Poon (University of Calgary, Canada) for critically reviewing the manuscript.

References
8. Han ZC, Bellucci S, Tenza D, Caen JP. Negative regulation of human megakaryocytopenesis by human platelet factor 4 and

