The additional transplantation of \textit{ex vivo} generated hematopoietic (post)-progenitor cells represents a possible approach to ameliorate high-dose chemotherapy induced cytopenia. We investigated the feasibility of the large-scale expansion and transplantation of autologous megakaryocytic cells in four patients with advanced solid tumors. Up to 1,460×10⁶ \textit{ex vivo} generated cells were administered without adverse effects but no clear cut effect on platelet recovery was observed.

Although hematopoietic recovery after the transplantation of mobilized peripheral blood progenitor cells (PBPC) is fast, there is still a period of neutropenia and thrombocytopenia when patients are at increased risk of developing severe infectious and bleeding complications. Theoretically, the additional transplantation of \textit{ex vivo} generated progenitor and post-progenitor cells might lead to the production of sufficient numbers of mature functional cells within a few days after transplantation. The feasibility and efficacy of this approach with regard to neutrophil recovery has been already demonstrated, however, a potential clinical benefit of additionally transplanted megakaryocytic cells has not yet been shown.

We have previously reported that megakaryocytic cells could be effectively generated \textit{ex vivo} using as few as three cytokines (i.e. stem cell factor, interleukin-3 and thrombopoietin). Based on these results, the present study aimed to investigate the feasibility of clinical large-scale \textit{ex vivo} expansion of autologous CD34⁺-selected cells in cytokine-stimulated cultures, and to assess the safety of an additional transplantation of these cells.

Four consenting patients with advanced solid tumors were enrolled in this pilot study. PBPC for the standard transplants (at least 3×10⁶ CD34⁺-cells/kg) plus additional cells for the \textit{ex vivo} cultures were collected by standard apheresis (Baxter CS3000, Baxter, Munich, Germany) following conventional-dose mobilization chemotherapy and granulocyte colony-stimulating factor (G-CSF)-mobilization. \textit{Ex vivo} cultures were set up with CliniMACS-CD34⁺-selected cells (median purity 98.8%, range: 84.4-99.7%) at 3×10⁶ cells/mL in X-VIVO10 medium (Serva, Heidelberg, Germany) supplemented with 100 ng/mL thrombopoietin (TPO) (Cell-Genix, Freiburg, Germany), 10 ng/mL interleukin-3 (IL-3) (Novartis, Nürnberg, Germany), and 10 ng/mL stem cell factor (SCF) (Amgen, Mississauga, Ontario, Canada) using 300 cm² tissue culture flasks (Falcon, Becton Dickinson, Heidelberg, Germany). At indicated time points, the cultured cells were harvested, washed, and prepared for immediate infusion. \textit{Ex vivo} generated cells were characterized by flow cytometry and colony-forming cell assays as described previously.

It is not known whether more immature or more mature megakaryocytic cells need to be administered to improve post-transplant platelet recovery. Because of the known effect of the duration of culture on the composition of the \textit{ex vivo} generated cell graft, the first three patients received day 7 \textit{ex vivo} cultured cells (more immature cells), and, when no effect on platelet recovery was observed, the transplantation of 12-day cultured cells (more mature cells) was investigated in an additional patient.

After 7 days, total nucleated cell expansion ranged between 3.1- and 9.5-fold (Table 1) with the lowest expansion rate observed for patient EXP01, whose cells had been CD34-selected after prior cryopreservation. This might have contributed to the impaired growth in culture, although, we have not yet studied this question systematically. The total nucleated cell expansion of cells from patients EXP02 and EXP03 was in the lower range of what we had observed previously, as was the fraction of megakaryocytic cells produced (20.3% to 25.8%). Thus, CD41 generation rates were rather modest (0.6 to 2.0, Table 1). The generation of more

Table 1. Large-scale \textit{ex vivo} expansion: laboratory results and composition of additionally transplanted grafts.

<table>
<thead>
<tr>
<th>Before Culture (day 0)</th>
<th>Laboratory Results</th>
<th>After Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CD34⁺ cells (seeded at 3×10⁶/mL)</td>
<td>% positive</td>
<td>-fold Expansion⁴ production⁴</td>
</tr>
<tr>
<td>CD34</td>
<td>CD41</td>
<td>TNC</td>
</tr>
<tr>
<td>EXP01</td>
<td>26×10⁶</td>
<td>48.4</td>
</tr>
<tr>
<td>EXP02</td>
<td>70×10⁶</td>
<td>33.8</td>
</tr>
<tr>
<td>EXP03</td>
<td>75×10⁶</td>
<td>58.4</td>
</tr>
<tr>
<td>EXP04</td>
<td>100×10⁶</td>
<td>4.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composition of Additionally Transplanted Grafts</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNC</td>
</tr>
<tr>
<td>total</td>
</tr>
<tr>
<td>CD41 cells</td>
</tr>
<tr>
<td>EXP01</td>
</tr>
<tr>
<td>EXP02</td>
</tr>
<tr>
<td>EXP03</td>
</tr>
<tr>
<td>EXP04</td>
</tr>
</tbody>
</table>

*Positively-selected CD34⁺ cells were cultured in cytokine-supplemented serum-free medium for either 7 days (EXP01, EXP02, EXP03) or 12 days (EXP04). Expansion cultures were initiated with 3×10⁶ CD34⁺ cells/mL with a total of 0.5×10⁶ CD34⁺ cells/kg and 1.0×10⁶ CD34⁺ cells/kg for EXP01 and EXP02 – EXP04, respectively. fold expansion = numbers of cells after a given culture period divided by the number of cells at day 0 of culture. Production: number of CD41⁺ cells produced per seeded CD34⁺ cell (%CD41 multiplied by TNC expansion rate/100). TNC: total nucleated cells.
generated cells were mainly character-
L† transfusions
µ generated cells
L < 500/
L > 20,000/
µ 106 CD34+ cells/kg (EXP04). Post transplant, G-CSF was administered daily at 300 µg (< 75 kg b.w.) and 480 µg (> 75 kg b.w.) daily until
generated cells: hematopoietic recovery
L† < 20,000/
data
106 CD34+ cells/kg (EXP02), 4.8
106 CD34+ cells/kg (EXP01, 2nd HD-CT), 3.4
L > 100/
106/kg CD41+-cells, which compares well with
106 CD34+ cells/kg (EXP01, 1st HD-CT), 3.0
mum of 2
consecutive days after transplantation with transfusion-independent platelet counts > 20,000/µL. ‡For comparison, hematopoietic recovery after the first course of HD-CT
plantation, are certainly warranted.
ods and, possibly, exogenous TPO administration after trans-
chemotherapy has not yet been convincingly demonstrat-
megakaryocytic cells on platelet recovery after high-dose
chemotherapy was not observed in all patients (Table 2) and the recovery patterns were within the range
maximum of 2
neutrophil recovery. †Neutrophil recovery: first of two consecutive days after transplantation with ANC > 100/µL and 500/µL; platelet recovery: first of 7
consecutive days after transplantation with transfusion-independent platelet counts > 20,000/µL. For comparison, hematopoietic recovery after the first course of HD-CT
(HD-VIC, transplantation of unmanipulated cells only, no additional transplantation of ex vivo expanded cells) in patient EXP01 is shown in brackets.

<table>
<thead>
<tr>
<th>Neutrophils (ANC)</th>
<th>Platelets (PLT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days with ANC</td>
<td>Days to ANC</td>
</tr>
<tr>
<td>< 100/µL</td>
<td>< 500/µL</td>
</tr>
<tr>
<td>EXP01 6 (5)†</td>
<td>8 (6)</td>
</tr>
<tr>
<td>EXP02 5</td>
<td>6</td>
</tr>
<tr>
<td>EXP03 4</td>
<td>6</td>
</tr>
<tr>
<td>EXP04 5</td>
<td>6</td>
</tr>
</tbody>
</table>

*Patients with advanced solid tumors (stage IV breast cancer, relapsed non-seminomatous germ cell tumor, stage IIIC non-seminomatous germ cell tumor, relapsed
metastatic sarcoma) received high-dose VIC-chemotherapy (etoposide 1,500 mg/m², ifosfamide 12,000 mg/m², carboplatin 1,500 mg/m²) followed by the transplantation
of unmanipulated PBPC on day 0 plus ex vivo expanded cells on day +1. Patient EXP01 underwent tandem HD-CT consisting of HD-VIC and HD-TC (etoposide 200
mg/m², cyclophosphamide 1,5000 mg/m²) with the additional transplantation of ex vivo expanded cells after the second HD-CT only. Unmanipulated PBPC grafts
contained 4.9×10^6 CD34+ cells/kg (EXP01, 1st HD-CT), 3.0×10^5 CD34+ cells/kg (EXP02, 2nd HD-CT), 3.4×10^5 CD34+ cells/kg (EXP02), 4.8×10^5 CD34+ cells/kg
(EXP03), and 4.1×10^5 CD34+ cells/kg (EXP04). Post transplant, G-CSF was administered daily at 300 µg (< 75 kg b.w.) and 480 µg (> 75 kg b.w.) daily until
neutrophil recovery. Neutrophil recovery: first of two consecutive days after transplantation with ANC > 100/µL and 500/µL; platelet recovery: first of 7
consecutive days after transplantation with transfusion-independent platelet counts > 20,000/µL. For comparison, hematopoietic recovery after the first course of HD-CT
(HD-VIC, transplantation of unmanipulated cells only, no additional transplantation of ex vivo expanded cells) in patient EXP01 is shown in brackets.

Taken together, an effect of additionally transplanted megakaryocytic cells on platelet recovery after high-dose chemotherapy has not yet been convincingly demonstrat-
ed. Additional studies, utilizing improved expansion method-
s and, possibly, exogenous TPO administration after trans-
plantation, are certainly warranted.

Stefan Scheding,* Markus Bergmann,* Gisa Rathke,*
Vogel Wilch Ich, *Wolfbrug Brugger,* Lothar Kanz*
From the *Department of Hematology, Oncology, Rheumatology, and Immunology; University of Tübingen, Germany; Department of Hematology/Oncology, Klinikum
Villingen-Schwenningen, Villingen-Schwenningen, Germany
°Current address: Charité Campus Virchow Klinik, Department of Pediatrics, Bone Marrow Transplantation, Berlin, Germany; Funding: This work was supported by funds from the Wilhelm
Sander-Stiftung (1999.039.1) awarded to SS, WB, and LK.

Key words: ex vivo expansion, megakaryocytic cells, high-dose chemotherapy, peripheral blood progenitor cell transplantation, CD34+ hematopoietic progenitor cells.

References
354:1092-3.
3. Kratz-Albers K, Scheding S, Mohle R, Buhring HJ, Baum C, Mc-
28:335–46.
4. Brugger W, Henschler R, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L. Positively selected autologous blood CD34+ cells and unseparated peripheral blood progenitor cells mediate identical hematopoietic engraftment after high-dose VP16, ifos-
5. Bokemeyer C, Franzeke A, Hartmann JT, Schobert, ARE, Aisenie L,
Metzner B, et al. A phase I/II study of sequential, dose-escala-
ted, high dose ifosfamide plus doxorubicin with peripheral
progenitor cells from mobilized peripheral blood CD34+ pro-

Letters to the Editor

table 2. High-dose chemotherapy and transplantation of PBPC plus ex vivo generated cells: hematopoietic recovery parameters.*