Clonal stability of initial leukemia in a child with CNS relapse 7.4 years after bone marrow relapse of common ALL

Second central nervous system (CNS) relapses represent about 7.3% of subsequent recurrences of childhood acute lymphoblastic leukemia (ALL). In most children these subsequent CNS relapses occur during the first 18 months after diagnosis of the first relapse (mean 1.42±0.73 years). We present a patient who suffered a second ALL relapse in the CNS more than seven years after diagnosis of his first relapse. The leukemic clone was completely stable over more than ten years as shown by minimal residual disease techniques. Possible reasons for the recurrence of the leukemic clone after this very long period of dormancy (e.g. role of the disease site, immune system dysfunction) are discussed.

Haematologica 2004; 89(6):e77-e79

Very late second central nervous system (CNS) relapses of childhood acute lymphoblastic leukemia (ALL) are rare, and there are no published case reports to date. Little is known about the pathogenesis of late first and second ALL relapses, but different theories regarding clonal evolution and immune system dysfunction have been discussed previously. Here, we present a case report of a very late subsequent CNS relapse of ALL without evidence of clonal evolution of the original clone.

Patient

In 1991, the now 20 year old male patient was diagnosed with common (c-) ALL at the age of 10 years. Due to his higher age and the presence of hyperleukocytosis, he was treated according to the high risk arm of protocol COALL-89 including cranial irradiation at a dose of 18 Gy. Two and a half years later, aged 13, the patient suffered a late isolated c-ALL bone marrow (BM) relapse and was treated according to protocol ALL-REZ BFM 90 (relapse trial of the Berlin-Frankfurt-Münster Group), group B, again including cranial irradiation (12 Gy)

The patient was included in a phase I/II-pilot study of active specific immunotherapy with the Newcastle-Disease-Virus. During maintenance therapy of first relapse treatment, cryo-conserved BM leukemic blasts from relapse diagnosis were injected subcutaneously every week after having been incubated with Newcastle-Disease-Virus and irradiated with 200 Gy, as previously described for renal cell carcinoma. After cessation of relapse-chemotherapy (10/1996) and in continuous second remission, hypogammaglobulinemia was diagnosed resulting from a B-cell deficiency (< 0.5% of leukocytes), and consequently the boy received multiple courses of intravenous immunoglobulins during the following years until now.

During the whole period of salvage chemotherapy and also after cessation of therapy, he suffered from recurrent episodes of bacterial upper respiratory tract infections, and, in 02/1997, already in an immunodeficient state, he experienced a severe meningococcal meningoencephalitis.

In 07/2001, after prolonged headaches and partial 6th cranial nerve palsy, lumbar and BM puncture revealed an isolated CNS relapse of his c-ALL. Currently, he receives chemotherapy according to protocol ALL-REZ BFM 96 (strategic group S2) and is to date in third complete remission. The CNS-directed therapy consists of oral dexamethasone, intravenous methotrexate and triple intrathecal therapy (cytarabine, prednisone and methotrexate) every two months during the first year and every three months during the second year.

Material and Methods

The following materials were available for analysis: BM slides at initial disease; BM aspirates at diagnosis of first and second relapse; peripheral blood (PB) and cerebro-spinal fluid (CSF) at diagnosis of second relapse, and BM follow-up samples of first and second relapse treatment. Mononuclear cells were isolated by Ficoll density gradient centrifugation (Seromed; Biochrom KG, Berlin, Germany). The diagnosis of the immunoglobulin heavy and light chain (IgH/IgK-Kde) gene rearrangements were used as clone-specific MRD markers. Clonality was assessed by homo-heteroduplex analysis. PCR products for which monoclonality was confirmed were directly sequenced. Minimal residual disease (MRD) quantification of BM follow-up samples was performed using real-time quantitative (RQ) PCR with germline TaqMan-probes (TCRD-D3, and IgH-JH6) and clone-specific primers.

Results

In the BM aspirate obtained at diagnosis of first relapse, two clonal markers were identified: an incomplete TCRD gene rearrangement Ddelta2-Ddelta3 and an IgH gene rearrangement VH4-VH3-DH3-JH6. Three primers, a Ddelta2-Ddelta3, a VH4-VH3 and a DH3-JH6 have been designed with a sensitivity of 10^4, 10^5 and 10^6, respectively. These primers were used to assess the stability of the clone at initial diagnosis and second relapse and to quantify MRD during relapse therapy. Screening for additional rearrangements was not done at presentation due to lack of available DNA and was negative in the CSF at second relapse diagnosis. In the BM, PCR screening for additional rearrangements was not performed at second relapse because of low leukemic blast counts.

The clone characterized by two monoclonal rearrangements detected with PCR at first relapse diagnosis was stable throughout the disease without evidence of emerging sub-clones or clonal evolution. This molecular clonal stability is reflected by the immunophenotype of the leukemic cells which did not change throughout the disease episodes. The monoclonal cells of the BM showed a high expression of CD10, CD19, TdT, CD24 and HLA-DR (c-ALL) at diagnosis of initial disease and first relapse. At second relapse diagnosis, the identical c-ALL was confirmed using the leukemic blasts in the CSF.

Neither at first nor at second relapse chromosomal translocations as TEL-AML1 (t(12;21), BCR-ABL (t(9;22), MLL-AF4 (t(4;11) were detectable.

Figure 1 summarises the results of monitoring of minimal residual disease (MRD) from initial diagnosis to second relapse. During frontline treatment, BM follow-up samples were not available. MRD quantification of BM aspirates obtained during treatment of first relapse showed a rapid initial response to therapy. After the second relapse therapy course, MRD was below the critical limit of 10-3. However, during and at the end of maintenance
Although, the patient had a good molecular response. Normally, patients with CVI have normal or -phenotypically stable clone. The leukemic cells of our patient could at least account for the development of leukemia or recurrence, respectively.

In conclusion, we describe for the first time a very late relapse of leukemia. It is believed that the remission induced by anti-leukemic therapy results in a marked reduction of the number of clonal blast cells under a certain threshold, resulting in regained control of the tumour cells by the host’s immune system. During the interval between initial disease and first ALL-relapse, our patient developed symptomatic B-cell deficiency with multiple upper respiratory-tract infections. This defect resembles common variable immunodeficiency (CVI), a disease with the hallmark pan-hypogammaglobulinemia and recurrent bacterial infection especially of the upper and lower respiratory tract. Normally, patients with CVI have normal or near normal numbers of B-cells, which is not true in our patient having nearly no B-cells (CD19-positive cells < 0.5% of lymphocytes). Interestingly, only the B-cell compartment was affected whereas the number of T-cells was normal. According to the aforementioned theory, a defect of immune surveillance as described in our patient could lead to insufficient antineoplastic control and subsequent flare-up of the neoplasm. Interestingly, although the majority of patients with CVI suffering from a malignant disease registered in the Immunodeficiency Cancer Registry had B-cell non-Hodgkin lymphomas (46%), still eight per cent of them had leukemia, suggesting that the CVI-like immunodeficiency of our patient could at least have facilitated the ALL recurrences. The original pre-leukemic clone identified by two stable gene rearrangements, as demonstrated above by MRD and immunophenotype analysis, must have persisted for more than ten years. This could be explained by the “two step model” of leukemogenesis as proposed by Greaves et al. He assumes a pre-leukemic clone with the origin already in the prenatal period which is never completely eliminated during therapy. One or more postnatal genetic alterations are then supposed to be necessary for the development of leukemia or recurrence, respectively. Selection pressure towards the “decisive-step” may be exerted by stress to the B-lymphoid progenitor compartment, for example after several episodes of infections as seen in our patient or even by aggressive treatment.

In conclusion, we describe for the first time a very late subsequent isolated CNS relapse of a immunogenetically and -phenotypically stable clone. The leukemic cells of the dominant clone hidden in the growth inhibiting environment of the CNS could have achieved a growth advantage by accumulating genetic alterations and an either simultaneous or following lack of immune system control. Assuming that indeed the immune system is a...
crucial factor for the control of leukemia, the question is whether the outgrowth of the dormant leukemic cells might be prevented. Recently, an association between a lower incidence of leukemia in children having received Haemophilus influenzae type b - Hib vaccination has been reported, and historically, a leukemia preventing effect of bacille Calmette-Guérin - BCG vaccination has been assumed.\(^\text{2-3}\) Thus, the question may be raised whether long-term control of leukemia could be achieved or maintained by T-cell stimulating procedures such as repeated vaccinations\(^\text{5}\).

Acknowledgements: We thank Wilhelmine Keune and Silke Hollmann for the excellent technical assistance. We thank Prof. W. D. Ludwig for immunophenotype analyses. We are grateful to Andrea Kretschmann for excellent data management of the ALL-REZ BFM trial. This work was kindly supported by the Deutsche Kinderkrebsstiftung, Germany and by the Kompetenzzentren der Pädiatrischen Onkologie, BMBF, Germany.

Correspondence: Cornelia Eckert
Charité, University, CVK Department of Pediatric Oncology/Hematology
Augustenburger Platz 1 13353 Berlin, Germany
Tel: +4930-450-566088 Fax: +4930-450-569946
E-mail: cornelia.eckert@charite.de

Keywords: very late second ALL-relapse, isolated CNS relapse of ALL, clonal stability, childhood ALL.

References