Pulmonary leukostasis is a rare but serious and often fatal complication of chronic myeloid leukemia (CML) in blast crisis and acute myeloid leukemia. Treatment options are limited for these patients. Imatinib mesylate (STI-571, Gleevec, Novartis) is a potent and selective inhibitor of the BCR-abl tyrosine kinase, the molecular abnormality that causes CML. The case of a 74-year-old man with a history of CML who presented in myeloid blast crisis with pulmonary leukostasis characterized by increasing dyspnea, hypoxemia, fever, and impending respiratory failure is reported. The patient was treated with single agent imatinib mesylate (IM) with rapid decrease in his white blood cell count (WBC) and marked improvement in his respiratory status. No electrolyte abnormalities consistent with tumor lysis syndrome were observed. IM may be an effective single agent therapy for pulmonary leukostasis in patients with CML blast crisis who are at risk for tumor lysis.

Patients with acute myeloid leukemia (AML) or CML in myeloid blast crisis who present with hyperleukocytosis have a poor prognosis, due primarily to early death from severe pulmonary and neurologic complications. Pulmonary leukostasis, microcirculatory failure from sludging of leukemic blasts in lung capillary vessels, has been identified as the single worst prognostic factor in patients with hyperleukocytosis.4 Despite significant advances in treatment regimens and supportive care there has been little improvement in outcomes in this patient population. Only 5 of 19 patients (26.3%) presenting with pulmonary leukostasis and treated with leukopheresis, hydroxyurea, and induction chemotherapy survived during the first week of treatment in one recent study.1,3

Imatinib mesylate (IM) a specific inhibitor of the bcr/abl tyrosine kinase, has been shown to have significant activity in patients with CML myeloid blast crisis.4,5 IM induced hematologic responses in 52% of CML myeloid blast crisis patients although complete hematologic responses were reported in less than 10%. IM has the ability to rapidly and safely cytoreduce patients with CML blast crisis. Median times to normalization of white blood cell count (WBC) and clearance of peripheral blasts in patients with CML myeloid blast crisis were 8.5 days and 16 days respectively (Karamlou, personal communication). This report describes a patient with CML myeloid blast crisis and life threatening pulmonary leukostasis who rapidly responded to IM with decrease in his WBC and marked improvement of his respiratory failure.

Case Report
A 74-year-old man with a nine-year history of stable phase CML, previously treated with hydroxyurea and anagrelide, presented to our institution with myeloid blast crisis for enrollment on a phase I IM trial. On screening evaluation, he was noted to be a frail appearing elderly man in no acute distress with a respiratory rate of 18 breaths per minute. Over the subsequent 24 to 48 hours, he developed marked increased dyspnea, hypoxemia (oxygen saturation of 88%) on room air and a low grade fever. On physical examination, the patient was in marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion, and marked respiratory distress with labored breathing, clear lung fields on auscultation and percussion. On high resolution CT scan of the chest that showed scattered bilateral thickening of the intralobular septa with patchy areas of ground glass opacity but no focal lung consolidation (see Figure 1A). The patient was started on 40% oxygen via face mask, antibiotics, and IM at a dose of 500 mg bid. A bronchoalveolar lavage was performed and all subsequent cultures were negative. Within 48 hours there was a significant decrease in his WBC and marked improvement in his respiratory status. No evidence of tumor lysis syndrome occurred (Table 1). Follow-up CT scan of the chest showed interval resolution of the intralobular septal thickening and vascular congestion (Figure 1B). The patient was discharged to home four days after admission and continued on IM for six months until time of relapse.

Discussion
Pulmonary leukostasis has been identified as the single worst prognostic factor in patients presenting with hyperleukocytosis of either acute myeloid leukemia or CML in myeloid blast crisis. Despite significant improvements in leukemia treatment regimens and supportive care, the outcome of patients with pulmonary leukostasis has not improved significantly over the past two decades and median survivals of less than one week are common.1,6,7 As in this case, many patients present with respiratory distress, hypoxemia, diffuse interstitial infiltrates on pulmonary radiographs, and fever. Current treatment focuses on aggressive supportive care and upon cytoreduction with...
leukopheresis, hydroxyurea, and/or conventional induction chemotherapy.

This report describes a 74-year-old man with CML myeloid blast crisis who enrolled on an IM trial and developed pulmonary leukostasis while awaiting initiation of therapy. Extensive evaluation for an infectious etiology to the patient’s fevers was unrevealing, consistent with a primary diagnosis of pulmonary leukostasis. The patient showed a rapid response to IM with a 38% reduction in his WBC within 36 hours of initiation of therapy and normalization of his WBC by nine days. Peripheral blast counts also decreased rapidly by 30% within 36 hours of initiation of treatment and by 86% after five days on IM therapy. There was no tumor lysis despite the rapid decrease in cell counts. CT scans of the chest revealed diffuse thickening of the intralobular septa with scattered areas of ground glass opacity within the lungs diffusely. Follow-up CT scan showed interval resolution of the intralobular septal thickening and vascular congestion on normalization of the patient’s cell counts. A second patient with CML myeloid blast crisis and pulmonary leukostasis treated similarly has also responded rapidly to the addition of IM with resolution of his pulmonary leukostasis.

IM leads to rapid apoptosis of CML cells in vitro and rapid lowering of the WBC count in patients with CML. Despite these rapid responses tumor lysis syndrome is rare. This case suggests that IM can be an effective single agent treatment of pulmonary leukostasis in patients with IM-naïve CML myeloid blast crisis. IM may also prove to be an effective agent in combination therapy with traditional treatments such as leukopheresis or hydroxyurea.

References


Table 1. Lack of Tumor Lysis During Imatinib Therapy for CML Blast Crisis.

<table>
<thead>
<tr>
<th>Day of Therapy</th>
<th>WBC (K/µl)</th>
<th>Blasts (%)</th>
<th>Platelet (K/µl)</th>
<th>Creatinine (mg/dL)</th>
<th>Potassium (mmol/L)</th>
<th>Phosphorous (mg/dL)</th>
<th>Acid (mg/dL)</th>
<th>LDH (U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>2.5</td>
<td>0</td>
<td>112</td>
<td>0.9</td>
<td>3.4</td>
<td>3.0</td>
<td>3.1</td>
<td>305</td>
</tr>
<tr>
<td>8</td>
<td>7.1</td>
<td>8</td>
<td>173</td>
<td>0.9</td>
<td>3.5</td>
<td>2.9</td>
<td>3.7</td>
<td>361</td>
</tr>
<tr>
<td>6</td>
<td>15.1</td>
<td>11</td>
<td>191</td>
<td>0.8</td>
<td>3.6</td>
<td>3.3</td>
<td>4.1</td>
<td>411</td>
</tr>
<tr>
<td>4</td>
<td>37.0</td>
<td>13</td>
<td>197</td>
<td>1.0</td>
<td>3.7</td>
<td>4.0</td>
<td>4.0</td>
<td>510</td>
</tr>
<tr>
<td>2</td>
<td>78.5</td>
<td>32</td>
<td>247</td>
<td>1.1</td>
<td>4.0</td>
<td>4.6</td>
<td>5.7</td>
<td>657</td>
</tr>
<tr>
<td>1</td>
<td>117</td>
<td>34</td>
<td>278</td>
<td>1.3</td>
<td>3.9</td>
<td>5.9</td>
<td>7.8</td>
<td>781</td>
</tr>
<tr>
<td>0</td>
<td>125</td>
<td>28</td>
<td>303</td>
<td>1.2</td>
<td>4.3</td>
<td>5.2</td>
<td>9.2</td>
<td>996</td>
</tr>
<tr>
<td>2</td>
<td>99.2</td>
<td>25</td>
<td>313</td>
<td>1.2</td>
<td>4.4</td>
<td>NA</td>
<td>7.2</td>
<td>909</td>
</tr>
</tbody>
</table>

NA, not available

Table 1. Lack of Tumor Lysis During Imatinib Therapy for CML Blast Crisis.


Correspondence: Jose F. Leis M.D., Ph.D.
Center for Hematologic Malignancies Oregon Health & Science University Mail code: UHN 75C 3181 S.W. Sam Jackson Park Road Portland, Oregon 97239-3098
Phone: 503-494-1551 Fax: 503-494-1552
E-mail: lesj@ohsu.edu