risk of 18.6% at 5 years in 86 follicular lymphoma patients autografted in first response.2 In our study, 23 patients out of 35 (65%) responded to an initial anthracycline-based chemotherapy (CHOP or CHOP-like) while 7 patients needed salvage treatment with high doses of cytarabine before ASCT and 5 patients never obtained a response good enough for ASCT. This proportion of MCL patients responding to an anthracycline-based chemotherapy is consistent with other results reported in the literature.3 Rituximab is likely to play an important role in association with anthracycline-based chemotherapy by effectively clearing blood and bone marrow lymphoma cells.4 However, the observation that addition of rituximab to induction therapy does not translate into prolonged progression-free survival supports the role of using ASCT in first response.4,5

In a recent landmark study, Dreyling et al.7 demonstrated that ASCT prolongs progression-free survival in MCL. They reported 3-year overall survival and progression-free survival rates of 83% and 54%, respectively. The corresponding 5-year rates in our study, dealing with a comparable population of patients, were 62% and 40%, respectively, thus confirming after an extended follow-up that ASCT in first response is an effective and safe treatment for MCL patients under 65 years of age.

Stéphane Vigouroux, Fanny Gaillard, Philippe Moreau, Jean-Luc Harousseau, Noël Milpied*

*Service d’Hématologie Clinique, CHU Hotel Dieu, Nantes, France; Laboratoire d’Anatomie Pathologique, CHU Hotel Dieu, Nantes, France

Key words: mantle cell lymphoma, high-dose therapy, autologous stem cell transplantation.

Correspondence: Stéphane Vigouroux, MD, Service d’Hématologie Clinique, CHU Hotel Dieu, 1 Place Alexis Ricordeau, 44000 Nantes. Phone: international +33.3.40083274; Fax: international +33.3.40083250; E-mail: vigouroux.s@wanadoo.fr

Development of functional Haemophilus influenzae type b antibodies after vaccination of autologous stem cell transplant recipients

Sixteen autologous stem cell transplant recipients received three vaccinations with conjugated haemophilus influenzae type b vaccine. Quantitative and qualitative aspects of the antibody response were studied. The vaccination schedule resulted in high antibody response rates and functional maturation of antibodies, as measured by antibody avidity and phagocytosis-inducing capacity.

haematologica 2005; 90:1582-1584

Infections are a major source of morbidity in patients undergoing autologous stem cell transplantation and are frequently caused by encapsulated bacteria such as Haemophilus influenzae type b (Hib) and Streptococcus pneumoniae.6 Therefore, vaccination of stem cell transplant recipients with Hib and pneumococcal vaccine has been recommended.7 A response to vaccination is often quantitatively expressed as antibody titers, but determination of avidity and phagocytosis-inducing capacity of antibodies can provide important information regarding the functional activity of antibodies.8 For instance, an increase in antibody avidity during the year following Hib vaccination with a concurrent decrease in antibody levels, has been described in children.7 We conducted a prospective follow-up study to determine quantitative and qualitative aspects of the humoral immune response to multiple vaccinations with conjugated H. influenzae type b vaccine in adult patients with non-Hodgkin’s lymphoma (n=8) or multiple myeloma (n=13) who underwent autologous stem cell transplantation. Patients with multiple myeloma received high dose melphalan, whereas patients with non-Hodgkin’s lymphoma received the BEAM regimen as conditioning therapy. At 6, 8 and 14 months after transplantation, patients were vaccinated with Hib (PRP-T vaccine: polyribosylribitolphosphate conjugated to tetanus toxoid). Serum samples were taken before vaccination and 3 weeks after each vaccination. For each patient, sera taken at all time points were analyzed simultaneously for all techniques. IgG antibody levels to H. influenzae were measured by ELISA as described previously.7 An adequate antibody response was defined as a 4-fold or greater increase in antibody levels in addition to a minimal titer of 50 U/mL corresponding to 18.8 µg/mL, which is 50% of the titer in the reference serum. Avidity indices of IgG anti-Hib antibodies were measured by a modification of the sodium thiocyanate (NaSCN) elution method described by Pullen et al.9 Antibody avidity can only reliably be determined in sera with a minimal optical density value of 1.0 at a 1:50 dilution, corresponding to a minimal Hib antibody concentration of 25 µg/mL. The relative

References

IgG antibod-
vaccination resulted in high antibody levels and
vaccination (a
Hib vaccine.
IgG antibodies increased in all but one of
Hib vaccine. B. Anti-
vaccine, as compared with AI after two vaccinations (p
conjugate vac-
Hib vaccine. Mean antibody levels plus standard
In brief, sera of patients were
antibodies increased significantly after
Anti-
Anke M.E. Claessen,°
IgG antibodies avidity indices
10 Antibodies conjugate vaccine. B. Anti-
vaccine, as compared with AI after two vaccinations (p
values 0.03 and 0.002, respectively). Hatched area
indicates mean value (± SE) of 12 healthy adults vaccinated
after two and three vaccinations, as compared with MFI before
this vaccination. Although this patient did have a robust IgA response after the third Hib vaccination (a
rise from 163 to 2034 U/mL) which was higher than that in the other patients (range 1 to 643 U/mL after three
Hib vaccinations), the high IgA antibody response cannot readily explain the drop in IgG avidity, apart from the
theoretical possibility that all high affinity IgG-bearing B lymphocytes would have switched to IgA, resulting in
blocking of phagocytosis. However, the data do underline the relation between antibody avidity and opsoniza-
tion/phagocytosis and show that an increase in antibody quantity is not always accompanied by an increase in
antibody quality.
In conclusion, in this study of autologous stem cell transplant recipients, multiple vaccinations with a conju-
gated Hib vaccine resulted in high antibody levels and maturation of antibody functionality.

Anke M.T. van der Velden,° Anke M.E. Claessen,° Helene van Velzen-Blad,* Dowhe H. Biesma,* Ger T. Rijkers*
Departments of Internal Medicine* and Medical Microbiology & Immunology,* Sint Antonius Hospital Nieuwegein, and
Department of Immunology, Laboratory of Paediatric Immunology, University Children’s Hospital “Het Wilhelminal-
Kindziekenhuis/The University Medical Centre Utrecht,” the Netherlands

Key words: Haemophilus influenzae type b, vaccination, autologous stem cell transplantation, phagocytosis.
Funding: financially supported by the Dutch Cancer Society.
Correspondence: Anke M.T. van der Velden, Department of Hematology, VU Medical Centre, P.O. Box 7057, 1007 MB,
Amsterdam, The Netherlands. Telephone: +31 20 4442604, Fax: +31 20 4442601. E-mail: am.vandervelden@vumc.nl

haematologica/the hematology journal | 2005; 90(11) | 1583 |

Figure 1. A. Anti-Hib IgG antibodies of 14 patients before (pre) and after one (post-1), two (post-2) and three (post-3) vaccinations with conjugated Hib vaccine. Mean antibody levels plus standard errors are shown. Anti-Hib antibodies increased significantly after three vaccinations (p value=0.001). Hatched area indicates mean value (± SE) of 12 healthy adults vaccinated with a single dose of Hib conjugate vaccine. B. Anti-Hib IgG antibodies avidity indices (AI) after one (post-1), two (post-2) and three (post-3) vaccinations with Hib vaccine. Mean AI plus standard errors are shown. Mean AI increased significantly after three vaccinations with conjugated Hib vaccine, as compared with AI after two vaccinations (p value=0.047). Hatched area indicates mean value (± SE) of 12 healthy adults vaccinated with a single dose of Hib conjugate vaccine. C. Phagocytosis inducing capacity of anti-Hib IgG antibodies of 14 patients, expressed as mean fluorescence intensity (MFI), before and after one, two and three vaccinations with Hib vaccine. MFI plus standard errors are shown. MFI increased significantly after two and three vaccinations, as compared with MFI before vaccination (p values 0.03 and 0.002, respectively). Hatched area indicates mean value (± SE) of 12 healthy adults vaccinated with a single dose of Hib conjugate vaccine.
References