Key words: cost, resource utilization, mycosis fungoides, cutaneous T-cell lymphoma, rare disease, Italy.

Funding: the study was partially supported by an unrestricted grant from Alfa Wassenmann, Italy. Although the sponsor had the right to comment on the manuscript, the opinions expressed are the responsibility of the authors alone.

Correspondence: Dr. Livio Garattini, CESAV Center for Health Economics, A.A. Valentini, Mario Negri Institute, via Villa Camozzi, 3, 24020 Ranica (BG), Italy. Phone: international +39.035.4535360. Fax: international +39.035.4535372. E-mail: lgarattini@marionegri.it

References


7. List of the INHS outpatient services (Prestazioni di assistenza specialistica ambulatoriale erogabili nell’ambito del Servizio Sanitario Nazionale, Decreto Ministeriale del 22 luglio 1996).


Malignant Lymphomas

Seminested polymerase chain reaction and heteroduplex analysis detects the monoclonality of IgH rearrangement in follicular lymphoma patients with high sensitivity

A new method, combining seminested polymerase chain reaction (PCR) with heteroduplex analysis, was utilized to detect follicular lymphoma (FL) cells in peripheral blood. The method, based on the detection of IgH rearrangements in DNA, detected the presence of monoclonal B cells in FL patients with a high frequency.

The monoclonality of IgH gene rearrangements has been applied to distinguish malignant B cells from normal ones. The complementarity–determining region (CDR) in the variable region of the IgH gene is unique for each B cell clone and the CDR III is the clonal signature of an individual B cell.12 The main difficulty of PCR-based clonality studies of B-cell malignancies is to discriminate between monoclonal and polyclonal products, especially when there is a high background of polyclonal B cells in the tumor sample. To discern between them more clearly, we utilized heteroduplex analysis in which PCR products are denatured at high temperatures and subsequently renatured to induce homoduplex or heteroduplex formation. Genomic DNA was isolated from 24 patients (18 males, 6 females) with histologically verified FL in the Hematology and Medical Oncology Division of Hasan Sadikin Hospital, Bandung, Indonesia. Consensus PCR primers used for amplifying the IgH gene were: FR3A (framework 3A), FR1c (framework 1c) for the 3’ end of the V region, and LJH (low JH), VJH (very low JH) for the 3’ end of the J region.14

The first round of amplification was performed using an upstream consensus primer FR3A or FR1c and a downstream primer LJH that binds to all published JH gene segments. For reamplification, the lower strand primer (LJH) was replaced by a nested consensus JH primer (VLJH) and a small amount (1%) of the first PCR was used as the template.3 The seminested PCR conditions were those described previously, with some modifications.3 For heteroduplex analysis, PCR products were denatured at 94°C for 10 min and subsequently cooled at 40°C to induce duplex formation. The hetero- and homoduplex (10 µL) were characterized by polyacrylamide gel electrophoresis (PAGE) with 10% non-reducing gel in 0.5×TBE buffer.6

The gel was stained with ethidium bromide, are shown in Figure 1A. A new method, combining seminested polymerase chain reaction (PCR) with heteroduplex analysis, was utilized to detect follicular lymphoma (FL) cells in peripheral blood. The method, based on the detection of IgH rearrangements in DNA, detected the presence of monoclonal B cells in FL patients with a high frequency. The DNA was extracted from the mixture using a Qiamp DNA Mini Kit (Qiagen). The PCR products, loaded on 4% agarose gel and stained with ethidium bromide, are shown in Figure 1A. TK cells (diffuse large B cell lymphoma), used as the positive control (lane 2), and a FL patient (lane 4) showed a clear monoclonal band. On the other hand, normal PBMCs as the negative control (lane 1) showed a broad band and FL patients (lane 3) had a very faint band. The seminested PCR alone gave a monoclonal band in 10 of 24 samples. However, it was very difficult to judge the presence of a clear monoclonal band in ethidium bromide-stained agarose gel. Therefore, heteroduplex analysis with the same samples shown in Figure 1A was performed by PAGE and visualized by SYBR Gold dye (Figure 1B). The monoclonal band was much easier to detect than with seminested PCR alone. A monoclonal band was seen in 19 of 24 patients (approximately 79%). Among the 24 FL patients, monoclonal IgH rearrangement was detected in 2 of 3 patients in stage I, both patients in stage II, 8 of 12 in stage III and all 7 in stage IV. In addition, there was no significant difference in clinical characteristics between patients with and without monoclonality. The method also identified monoclonality in NALM-6 (pre-B acute lymphoblastic lymphoma), RPMI 1788 (B acute lymphoblastic lymphoma) and HD-MY-Z (nodular sclerosis Hodgkin’s lymphoma) cell lines. This combined method detected a monoclonal band in the DNA sample from the mixture containing 1 malig-
A nant cell in 10,000 normal PBMC (Figure 2).

We have established a new sensitive method for detecting monoclonality of IgH rearrangements. The method consists of seminested PCR, heteroduplex analysis with PAGE and SYBR Gold staining. This method detected monoclonality of the IgH rearrangement in 19 of 24 peripheral blood leukocyte DNA samples from FL patients and it was more sensitive than seminested PCR with PAGE and ethidium bromide. The method could detect 1 malignant cell in 10,000 PBMC and was approximately 10 times more sensitive than silver nitrate-stained PAGE after heteroduplex analysis. Our method might be useful for detecting malignant B cells in minimal residual disease or discriminating such cells from a polyclonal expansion of reactive B cells.

Amaylia Oehadian, Naoki Koide, Mya Mya Mu, Ferdaus Hassan, Tomosaki Yoshida, Takashi Yokochi
Department of Microbiology and Immunology and Research Center for Infectious Disease, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan

Key words: seminested PCR, heteroduplex analysis, monoclonality, follicular lymphoma.

Funding: this work was partially supported by a Grant for Foreign Researchers from Aichi Medical University School of Medicine.

Correspondence: Dr. Takashi Yokochi, MD, PhD, Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan. Phone: international +81.561.623311/2269. Fax: international +81.561.639187. E-mail: yokochi@aichi-med-u.ac.jp

References