
Acute Myeloid Leukemia

Tetraploidy or near-tetraploidy clones with double 8;21 translocation: a non-random additional anomaly of acute myeloid leukemia with t(8;21)(q22;22)

We report on 6 patients with tetraploidy or near-tetraploidy acute myeloid leukemia (AML) with double t(8;21)(q22;q22) and review the literature on cases with the same cytogenetic abnormalities. Some common features were revealed by this analysis.

The cytogenetic abnormality of tetraploidy or near-tetraploidy is a rare finding in acute myeloid leukemia (AML). Lemez et al. divided near-tetraploidy AML into 2 categories: primary and secondary according to its origin. It is known that patients with primary near-tetraploidy AML manifest some common features: (i) near-tetraploidy karyotypes in most of the bone marrow metaphases examined at diagnosis of AML; (ii) the presence of giant myeloid blasts and dysplastic morphology in erythroid and/or megakaryocytic lineages in the bone marrow, pointing to the origin from pluripotent myeloid progenitor cells; (iii) expression of CD34 antigen; (iv) low yields of granulocyte- macrophage colony-forming units (GM-CFU) in culture; (v) a preceding preleukemic phase before the onset of the disease, and (vi) a poor prognosis. So far secondary tetraploidy or near-tetraploidy AML has been associated with multiple structural chromosomal aberrations. There have been seven cases of AML with clearly secondary tetraploidy or near-tetraploidy metaphases with duplication of t(8;21)(q22;q22) at diagnosis or during the course of leukemia reported in the literature2-6 (Table 1). We report here another six such cases.

Between January 1990 and December 2003, 216 cases of t(8;21)(q22;q22) AML were diagnosed in our institute, and all of them were AML-M2 subtype according to the FAB criteria. The patients’ ages ranged 3–65 years with a median of 28 years; 125 were male and 91 female. Seventy-three patients(33.8%) presented with coexistence of normal and abnormal karyotypes, an additional chromosome aberration occurred in 146/216 (67.6%) of the patients and 53 (24.5%) had a complex karyotype (≥3 chromosomal abnormalities). The most frequent additional abnormalities were loss of a sex chromosome (41.2%), partial deletion of the long arm of chromosome 9(23 cases, 10.6%) and less often, deletion or partial deletion of the long arm of chromosome 7 (6 cases, 2.85%). Other additional structural abnormalities included

Table 1. Clinical and genetic features of the 13 cases of tetraploidy or near-tetraploidy AML with double t(8;21)(q22;q22).

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex/age(years)</th>
<th>Karyotype</th>
<th>Survival (months)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M/28</td>
<td>90,XX,Y-Y, t(8;21)(q22;q22) 7[25]/46,XY, t(8;21)(q22;q22), +der(1), t(1;?) (p36;?) 2[2]/46,XY[4]</td>
<td>32/46,XY[2]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M/53</td>
<td>46,XY/90,XX,-Y2,-11, t(8;21)(q22;q22) 7, +mar[92.5%] 12+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M/31</td>
<td>46,XY, t(8;21)(q22;q22)[2]/46,XY,add(7)(q31) 7, t(8;21)(q22;q22)[7]/46,XY[10] 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F/8</td>
<td>46,XX, t(8;21)(q22;q22)[13]/46,XX, +4 t(8;21)(q22;q22) 45/92,XXYY, t(8;21)(q22;q22) 2[45]/46,XX[4]</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F/10</td>
<td>46,XX, t(8;21)(q22;q22)[2]/46,XX, add(7)(q31) 7, t(8;21)(q22;q22) 2[72]/46,XX[7] 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M/7</td>
<td>45,XY, t(8;21)(q22;q22)[6]/90,XX, 46,XY, t(8;21)(q22;q22) 2[32]/46,XY[2] 20+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F/61</td>
<td>45,XY, t(8;21)(q22;q22) 7[21]/90,XX-Y, t(8;21)(q22;q22) 2[7]/46,XX[12] 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F/6</td>
<td>46,XX, t(8;21)(q22;q22) 7[13]/46,XX, t(8;21)(q22;q22) 2[2] 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>M/48</td>
<td>41-44,X,Y, t(8;21)(q22;q22) 2[9]/92,XXYY, t(8;21)(q22;q22) 2[7]/46,XX[12] 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F/9</td>
<td>46,XX, t(8;21)(q22;q22) 2[7]/92,XXYY, t(8;21)(q22;q22) 2[8] 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>M/35</td>
<td>46,XX, t(8;21)(q22;q22) 2[10]/45,XY, t(8;21)(q22;q22) 2[3]/46,XX, t(8;21)(q22;q22) 2[10]/46,XX[12] 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F/11</td>
<td>46,XX, t(8;21)(q22;q22) 2[7]/46,XX[2] 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>F/12</td>
<td>46,XX, t(8;21)(q22;q22) 2[7]/46,XX[2] 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
has been followed in some tetraploid or near-tetraploid AML patients with double t(8;21) (q22;q22). In these patients the initial chromosome changes were only t(8;21) cells without double t(8;21) (q22;q22); the latter emerged during the course of the disease, suggesting that the tetraploidy or near-tetraploidy clone was the consequence of a clonal evolution.

In conclusion, a tetraploidy or near-tetraploidy clone with double 8;21 translocation is a non-random additional anomaly in some cases of t(8;21)(q22;q22) AML and predicts a poor prognosis.

Zhijian Xiao, Shihe Liu, Xuping Liu, Minghua Yu, Yushu Hao
Department of Clinical Hematology, State Key Laboratory of Experiment Hematology, Institute of Hematology, Chinese Academy of Medical Sciences, 288 Nanning Road, Tianjin 300020, China
Funding: supported in part by The Project-sponsored by SRF for ROCS, SEM and National Natural Science Funds (No. 50270573).
Correspondence: Zhijian Xiao, M.D., Department of Clinical Hematology, Institute of Hematology, Chinese Academy of Medical Sciences, 288 Nanning Road, Tianjin 300020, China.
Fax: international +86-22-27306542. E-mail: zjxiao@hotmail.com

Reference

Acute Lymphoblastic Leukemia

The t(12:21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12:21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12;21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12;21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12;21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12;21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12;21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12;21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12;21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12;21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12;21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia

The t(12;21) is underrepresented in childhood B-lineage acute lymphoblastic leukemia in Kerala, Southern India

Acute Lymphoblastic Leukemia