Submicroscopic deletions adjacent to the breakpoints of balanced translocations were identified in 9%-16% of all cases of chronic myeloid leukemia (CML) by interphase fluorescence in situ hybridization (FISH). The rate of hematologic and cytogenetic responses to imatinib was statistically significantly lower in patients with deletions.

So far only a few studies, with limited numbers of cases, have examined the incidence and prognostic impact of submicroscopic deletions in balanced translocations in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) (Table 1). We, therefore, determined the incidence of submicroscopic deletions in the most common balanced rearrangements in leukemia using interphase FISH. This study was based on 245 cases with CML, 79 patients with ALL, and 412 patients with AML, who were referred to our laboratory from January 2000 to April 2004. The cohort of patients with AML comprised 112 patients with AML1-ETO, 108 patients with PML-RARα, 122 patients with CBFB-MYH11, and 96 patients with different MLL rearrangements. The cohort with ALL comprised 70 patients with BCR-ABL positive ALL and 29 patients with different MLL rearrangements. Cytogenetic analysis was performed in all cases. FISH was performed on interphase nuclei and/or metaphases on bone marrow smears or blood smears. We used a BCR-ABL two color/two fusion probe (Cancer Genetics, CGPT 07), a LSI AML1-ETO dual color, dual fusion translocation probe, a LSI PML-RARα dual color, dual fusion translocation probe, a LSI CBFB dual color, break apart rearrangement probe (Core Binding Factor β-subunit), and a LSI MLL dual color, break apart rearrangement probe (Abbott, SJ 63-81). At least 100 interphase nuclei were viewed for each case. The analyzing system, ISIS® (MetaSystems, Altusseheim, Germany), was used for documentation.

In all cases the leukemia-specific fusion transcripts were also amplified by reverse transcription polymerase chain reaction (RT-PCR). For analysis of MLL fusions with partner genes in AML and ALL the respective RT-PCR was performed. In CML we found submicroscopic deletions in 9% of cases (22/245) with interphase FISH. In BCR-ABL positive ALL the incidence was 6% (4/70) and in ALL with MLL rearrangements it was 3% (1/29). In the different subgroups of AML the incidence of deletions was between 2% and 8% (AML1-ETO: 4% (4/112); CBFB-MYH11: 2% (3/122); PML-RARα: 6% (7/118); MLL rearrangements: 8% (8/96) (χ², n.s.) (Table 1).

Submicroscopic deletions occur in 9-16% of patients with CML and are clearly associated with an inferior prognosis. We determined the incidence of submicroscopic deletions in the most frequent reciprocal translocations in acute leukemias, as well as in CML. Our results in CML (deletions in 9%) and in BCR-ABL positive ALL (deletions in 6%) were in the ranges reported in the literature. The incidence that was found in ALL with different MLL rearrangements was 3%, which is lower than published so far. We observed deletions in 3% of AML with PML-RARα and in 4% of AML with AML1-ETO. Kolomietz et al. did not find deletions in subtypes of AML; to our knowledge their study is the only other examination of submicroscopic deletions in these subtypes. The incidence of submicroscopic deletions in AML with CBFB-MYH11 was 2% in our study.

These data provide a strong indication that the frequency of these deletions is much lower than previously published (10-33%).

We compared the incidence of submicroscopic deletions accompanying balanced translocations using interphase fluorescence in situ hybridization (FISH) in 245 cases with chronic myeloid leukemia (CML), 79 patients with acute lymphoblastic leukemia (ALL), and BCR-ABL positive acute lymphoblastic leukemia, and chronic myeloid leukemia.

Acute Myeloid Leukemia

The incidence of submicroscopic deletions in reciprocal translocations is similar in acute myeloid leukemia, BCR-ABL positive acute lymphoblastic leukemia, and chronic myeloid leukemia.
submicroscopic deletions in 8% of our cohort with AML with different MLL rearrangements. This is in contrast to the results of Mathew et al., who did not find submicroscopic deletions in 22 children with AML and MLL rearrangements.7

In conclusion, we found a similar incidence of 2-9% of submicroscopic deletions in a variety of leukemias. Although we analyzed a high number of patients we were unable to determine the prognostic impact of these deletions in acute leukemias (data not shown) because of the limited number of patients with submicroscopic deletions and the specific individual prognoses: AML with MLL translocations in 8% of our cohort with AML with different MLL rearrangements and with inv(16) or t(16;16) and acute myeloid leukemia (AML) is a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 2001;97:5851-8.

Multiple Myeloma

Global real-time quantification/reverse transcription-polymerase chain reaction for detecting proto-oncogenes associated with 14q32 chromosomal translocation in multiple myeloma

A global real-time quantitative/reverse transcription-polymerase chain reaction technique for detecting the expression of six 14q32 chromosomal translocation-associated proto-oncogenes in marrow plasma cells was established and applied to myeloma specimens. This technique is an alternative method of detecting 14q32 rearrangements and allows investigation of the relationship between proto-oncogene expression and clinical features.

Chromosomal translocations involving the immunoglobulin heavy chain gene (IGH) locus (14q3) play important roles in multiple myeloma (MM). The transcripational acti-

Table 1. Comparison of our data and previously published data: incidence of submicroscopic deletions in leukemias with reciprocal translocations.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CML</td>
<td>22/245 (9%): this study</td>
</tr>
<tr>
<td></td>
<td>23/250 (9.2%): Kolomietz et al., 2001</td>
</tr>
<tr>
<td></td>
<td>39/241 (16.2%): Huntly et al., 2001</td>
</tr>
<tr>
<td>BCR-ABL positive ALL</td>
<td>4/70 (6%): this study</td>
</tr>
<tr>
<td></td>
<td>1/13 (7.7%): Kolomietz et al., 2001</td>
</tr>
<tr>
<td></td>
<td>4/45 (9%): Specchia et al., 2003</td>
</tr>
<tr>
<td>ALL with MLL rearrangements</td>
<td>1/29 (3%): this study</td>
</tr>
<tr>
<td></td>
<td>3/18 children (17%): Barber et al., 2004</td>
</tr>
<tr>
<td>AML with AML1-ETO</td>
<td>4/112 (4%): this study</td>
</tr>
<tr>
<td></td>
<td>0/14 (0%): Kolomietz et al., 2001</td>
</tr>
<tr>
<td>AML with CBFB-MYH11</td>
<td>3/122 (2%): this study</td>
</tr>
<tr>
<td></td>
<td>5/15 (33%): Martinet et al., 1997</td>
</tr>
<tr>
<td></td>
<td>2/20 (10%): Kolomietz et al., 2001</td>
</tr>
<tr>
<td></td>
<td>6/42 (14%): Martinon et al., 1995</td>
</tr>
<tr>
<td>AML with PML-RARA</td>
<td>3/108 (3%): this study</td>
</tr>
<tr>
<td></td>
<td>0/30 (0%): Kolomietz et al., 2001</td>
</tr>
<tr>
<td>AML with MLL rearrangements</td>
<td>8/96 (8%): this study</td>
</tr>
<tr>
<td></td>
<td>0/22 children (0%): Mathew et al., 1999</td>
</tr>
<tr>
<td>ALL and AML with MLL rearrangements</td>
<td>7/43 (16%): Kolomietz et al., 2001</td>
</tr>
</tbody>
</table>

Unlize Bacher, Susanne Schmitz, Wolfgang Kern, Wolfgang Hiddemann, Torsten Hafeldt, Claudia Schoch

Laboratory for Leukemia Diagnostics, Department for Internal Medicine III, Klinikum Grosshadern, Ludwig-Maximilians-University, Marchioninistr. 15, D-81377 Munich, Germany. Phone: international +49.89.70954972. Fax: international +49.89.70954971. E-mail: unbache@med.uni-muenchen.de

References

