European consensus on grading bone marrow fibrosis and assessment of cellularity

Quantification of characteristic bone marrow biopsy features includes basic parameters such as cellularity and fiber content. These are important to assess the dynamics of disease processes with a significant impact on risk stratification, survival patterns and, especially, therapy-related changes. A panel of experienced European pathologists and a foreign expert evaluated, at a multi-headed microscope, a large number of representative slides of trephine biopsies from patients with myelofibrosis in an attempt to reach a consensus on how to grade cellularity and fibrosis. This included a critical evaluation of previously described scoring systems. During the microscopic analysis and subsequent discussion and voting, the importance of age-dependent decrease in cellularity was recognized. Grading of myelofibrosis was simplified by using four easily reproducible categories including differentiation between reticulin and collagen. A consensus was reached that the density of fibers must be assessed in relation to the hematopoietic tissue. This feature is especially important in order to avoid a false impression of a reduced fiber content in fatty and/or edematous bone marrow samples after treatment. The consensus for measuring myelofibrosis by clear and reproducible guidelines achieved by our group should allow for precise grading during the disease process and after therapy.

Key words: bone marrow, cellularity, grading of myelofibrosis, standardization, trephine biopsies

Haematologica 2005; 90:1128-1132

©2005 Ferrata Storti Foundation
categories (0, 1, 2, 3) according to Georgii and Thiele is predominantly based on expert evaluation by pathologists and lacks strict hematologic criteria. Since controversy and discussion continues about the best practical means to determine cellularity and fiber content routinely and reproducibly in bone marrow trephine biopsy specimens, a number of pathologists interested in this issue convened with the explicit aim of recommending an appropriate grading system.

Methods

Following a general as well as critical discussion on the most widely applied previous scoring systems for normal values of bone marrow cellularity and the grading of myelofibrosis, our panel of hematopathologists reviewed more than 150 trephine biopsy specimens, a number of pathologists interested in this issue convened with the explicit aim of recommending an appropriate grading system.

Results

Unequivocal consensus was reached that a basic requirement for an assessment of cellularity is a representative, i.e. artefact-free, biopsy of a certain length taken at an orthograde direction (i.e. at right angles to the cortical bone) and that the sections are of constant thickness. Consequently, positive characteristics included: a non-tangential biopsy at least 1.5 cm in length (to enable the evaluation of ten, at least partially preserved, intertrabecular areas) and an optimal thickness of the paraffin sections ranging between 3 and 4 μm. Based on the experience gained from bone marrow specimens without hematologic disease, cellularity was documented in relation to age and with respect to normally occurring ranges (Table 2). Quantity and quality (reticulin/collagen) of the fiber content was determined only in areas of hematopoiesis by using a scoring system comprising four grades (Table 3). This semi-quantitative grading was easily reproducible in samples derived from patients presenting with different stages of CMPD (Figures 1 A-D). However, several points must be considered when applying our scoring system. The first of these is the quality of the reticulin stain, which should be assessed by detection of normal staining in vessel walls as internal controls. Furthermore, lymphoid nodules and vessels as well as fibers framing adipocytes must be disregarded. Finally, areas of prominent scleredema and/or scarring should be included in the overall grading of myelofibrosis. The 13 pathologists involved in this study reached a consensus of more than 95%, including a similar grade of reproducibility. It was conclude-
ed that simplifying former classification systems (Table 1), in particular regarding myelofibrosis in relation to bone marrow cellularity, may help to stage the dynamics of hematologic disorders not only more accurately, but also in a more easily reproducible way.

Discussion

It has long been recognized that an age-related quantitative change must be considered when evaluating any given bone marrow biopsy specimen for hematopoiesis or cellularity. In this context the question arises whether and to what extent trephine biopsy material may be compared to aspirates. Reports in the literature offer rather contradictory observations which are also dependent on the method of evaluation. On the other hand, most investigators concur that in comparison with smears and imprints, biopsy examination has proven to be an important and reliable tool to validate bone marrow cellularity. Determining alterations in cellularity is not only important in patients following cytoreductive treatment in order to assess therapeutic efficacy but also in CMPD for diagnosis and staging. Moreover, the progression of the disease process can be documented and consequently different risk groups with variable survival patterns may be defined.

By definition, myelofibrosis is consistent with an increase in the bone marrow fiber content beyond the normal range and therefore, this term does not denote quality (reticulin versus collagen) nor quantity (borderline to marked). However, in relation to CMPD, myelofibrosis is frequently used by the clinicians to describe a situation characterized by the laboratory findings of anemia, splenomegaly and a leuko-erythroid blood picture with appearance of tear drop erythrocytes. It should be emphasized that these changes indicate an advanced stages of (collagen) fibrosis associated with myeloid metaplasia, but usually these peripheral findings are not encountered in minimal to mild increase in reticulin.
(grades 0 and 1) in the early stages of CML.17,13,15

The present study simplifies all previous descriptions of fiber scoring (Table 1) by reducing them to four grades, including normal reticulin density, in order to avoid excessive overlapping and to achieve a higher degree of reproducibility in routine diagnosis. Confusion created in former systems,13,15 in which normal reticulin is classified as grade 1, was reduced by classifying normal as N - normal or grade 0.

In conclusion, the consensus reached by our group of experienced hematopathologists, (including both European pathologists and a foreign expert) on the guidelines to be used for measuring cellularity and bone marrow fiber content may provide a useful tool for assessing both important dynamic aspects of the disease process, and therapy-related changes.

JT drafted the manuscript, all six authors of the current communication fully and directly participated in the concept, design, data analysis and critical revision of the results of this study. In addition, all authors reviewed the histological slide material under the supervision of the first author. Table 4 was composed by the first two authors who also provided Figure 1a-d. Tables 2 and 3 were provided by all six authors of this paper.

This work was supported by a grant from the European Union, EUMNET project (QLG1-CT 2002-01123), Palermo, Italy, Consensus Conference, Oct. 28-31, 2004.

Contractors, key persons and foreign expert: further members (alphabetical order) of the panel are Silvia Ascoli, Institute for Pathology, University of Reggio Emilia, Italy; Stefano Ascari, Institute of Anatomic Pathology, University of Perugia, Italy; Emanuela Boveri, Institute for Pathology, IRCCS Policlinico San Matteo and University of Pavia, Italy; Franco Fedeli, Institute for Pathology, Ospeedale S. Andrea, La Spezia, Italy; Ada Maria Florena, Institute for Pathology, University of Palermo, Italy; Claudio Tripodo, Institute for Pathology, University of Palermo, Italy; Marco Ungari, Department of Pathology I, Speciali Civili, Brescia, Italy.

Manuscript received February 17, 2005. Accepted June 8, 2005.

References

10. Emmanuel Boveri, Institute for Pathology, University of Palermo, Italy; Claudio Tripodo, Institute for Pathology, University of Palermo, Italy; Marco Ungari, Department of Pathology I, Speciali Civili, Brescia, Italy.

Manuscript received February 17, 2005. Accepted June 8, 2005.

