FIP1L1/RARA with breakpoint at FIP1L1 intron13: a variant translocation in acute promyelocytic leukemia

by Juliane Menezes, Francesco Acquadro, Concepcion Perez-Pons de la Villa, Felix Garcia-Sanchez, Sara Alvarez, and Juan C. Cigudosa

Haematologica 2011 [Epub ahead of print]

Publisher's Disclaimer.

E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.

Haematologica (pISSN: 0390-6078, eISSN: 1592-8721, NLM ID: 0417435, www.haematologica.org) publishes peer-reviewed papers across all areas of experimental and clinical hematology. The journal is owned by the Ferrata Storti Foundation, a non-profit organization, and serves the scientific community with strict adherence to the principles of open access publishing (www.doaj.org). In addition, the journal makes every paper published immediately available in PubMed Central (PMC), the US National Institutes of Health (NIH) free digital archive of biomedical and life sciences journal literature.

Support Haematologica and Open Access Publishing by becoming a member of the European Hematology Association (EHA) and enjoying the benefits of this membership, which include participation in the online CME program.
FIP1L1/RARA with breakpoint at FIP1L1 intron13: a variant translocation in acute promyelocytic leukemia

Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia that is characterized by three distinct features: accumulation in the bone marrow (BM) of tumour cells with promyelocytic phenotype; association with specific translocations which involve chromosome 17 at the retinoic acid receptor alpha (*RARA*) locus; and the sensitivity of APL blasts to the differentiating action of retinoic acid (RA) (1). The *RARA* locus was first demonstrated to be involved in the t(15;17)(q22;q21), that fuses the *RARA* and the *PML* genes. While the PML/RARA fusion transcript is present in over 95% of APL cases, variant rearrangements have been identified involving *RARA* and, at lower frequency (>3%) the *PLZF*, or more rarely the *NPM1, NUMA, STAT5b, PRKARIA* and *FIP1L1* as partner genes (2, 3). The nature of the fusion partner has an important role on the disease biology particularly regarding RA sensitivity, with *PLZF-RARA* patients characterized by RA resistance (4). Following the description published in Haematologica in 2008 (5), we describe here the second case of *FIP1L1/RARA* fusion gene in an APL patient.

A 77 years-old female patient presented with a progressive history of asthenia for several weeks. Initial laboratory evaluation of peripheral blood revealed a white blood cell of 59.34 x10⁹/l with 84% of abnormal promyelocyte cells, haemoglobin level of 9.2 g/dL, and a platelet count of 109 x10⁹/l. The coagulation function in this patient was normal and lactate dehydrogenase was 1938 U/L. The BM aspirate showed a hypercellular marrow replaced by promyelocytes blasts with intense azurophilic granule and prominent nucleoli accounting for 93% of all nucleated cells, suggestive of APL (Figure 1A). Immunophenotype was: CD45⁺, CD45RA⁺, CD13⁺, CD15⁻low, CD33⁺, CD133⁻low, HLA-DR⁺, CD11c⁺low, CD65⁺low, CD7¹⁺low, CD117⁺low and CD38⁺low. The molecular analysis identified the FLT3-ITD mutation, being negative for the presence *FLT3-D835Y, CEBPA* and *NPM1* mutations, as well for *PML/RARA, AML1/ETO* and *CBFβ/MYH11* fusion genes. The patient was treated according to PETHEMA APL 2005 protocol. Unfortunately, she died after 10 days of treatment probably due to RA syndrome, and response to RA treatment could not be assessed in this case due to early death.
Cytogenetics revealed, in addition to normal metaphases, a complex karyotype with the presence of a der(17) in 50% of the metaphases with the following formula: 44,X,der(X)t(X;?)p?,-2,-4,-16,+der(17)t(17;?)q21;?) [cp10] (Figure 1B). FISH analysis with the PML-RARA dual-fusion translocation probe (Kreatech Diagnostics, Amsterdam, The Netherlands) identified no dual fusion signal but the presence of two copies PML and an extra signal of RARA gene, indicating a possible variant rearrangement of this gene. The presence of DNA copy number changes was analyzed by array CGH with Agilent 44K platform (Agilent Technologies, Palo Alto, CA, USA). We found a mono-allelic gain of 40.8Mb in chromosome 17q21 (Figure 1C). The duplicated region started within the locus of RARA gene, also indicating its possible rearrangement. To identify the 5′-fusion partner of RARA, we assayed the 5′-RACE method (SMARTer RACE cDNA, Clontech, Mountain View, CA, USA) designing a reverse primer complementary to exon 3 of the RARA gene. FIP1L1 was identified as the fusion partner of RARA. The rearrangement fused the RARA exon 3 with exon 13 of the FIP1L1 gene (Figure 1D). Direct sequencing of the reverse-transcriptase PCR products revealed that the FIP1L1/RARA and the RARA/FIP1L1 fusion transcripts were both in frame fusions (Figure 1E).

FIP1L1 is an integral subunit of cleavage and polyadenylation specificity factor and interacts with poly(A)polymerase to stimulate polyadenilation (6). This gene is recurrently fused to PDGFRA in patients with eosinophilia-associated myeloproliferative neoplasms (Eos-MPNs), with clinical response to imatinib (7, 8). Although a FIP1L1/RARA fusion was described in a case of juvenile myelomonocytic leukemia (9), Kondo et al. described, for the first time, the FIP1L1/RARA fusion gene in APL (5). In both cases, the fusion gene was generated juxtaposing exons 15 and 3 of FIP1L1 and RARA, respectively. In the molecular pathogenesis of APL, fusion gene products must form homodimers to repress RA-responsive transcriptional activity (10, 11). In fact, homodimerization, which seems to be dependent on the FIP1L1 portion, was demonstrated for the isoforms identified in the previous patient with the FIP1L1/RARA fusion that retained FIP1L1 exon 15 and responded to RA treatment (5). Conversely in the FIP1L1/PDGFRA fusion in Eos-MPNs, the breakpoint in FIP1L1 is variable and spreads from exon 10 to exon 13 (exons 7 to 9, according to Cools J et al (7)), lacking the ability to form homodimers in a mouse pro-B cell line (12). Remains to be elucidated if the RA syndrome observed in our case could be due to the abnormal
homodimerization predicted by the breakpoint in FIP1L1, similar to the one observed in Eos-MPNs.

In conclusion, we report the second occurrence of t(4;17)(q12;q21), with the reciprocal FIP1L1/RARA transcripts, in a very aggressive case of APL. Our results confirm FIP1L1 as a recurrent partner of RARA gene with breakpoint at intron 13 that was associated with the RA syndrome. We therefore propose the inclusion of the FIP1L1/RARA variant fusion gene in the screening in PML/RARA-negative APL patients in order to indicate alternatives therapies.

Juliane Menezes1, Francesco Acquadro1, Concepción Perez-Pons de la Villa2, Félix García-Sánchez3, Sara Álvarez1 and Juan C. Cigudosa1

1 Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; 2 Hematology Service, Severo Ochoa Hospital, Madrid, Spain; 3Histocompatibility and Molecular Biology Lab, Madrid Blood Transfusion Centre, Madrid, Spain

Acknowledgments
We thank Dra. Eva Yebra Fernandez from Severo Ochoa Hospital, who provided some clinical data to be evaluated in this study, and all the coworkers in our laboratory, for their excellent technical assistance.

Funding
This work was supported by an INTRASALUD project PI 08-0440 to J.C.C. and Obra Social- Fundación “La Caixa” to JM.

Correspondence
Juan C. Cigudosa, PhD. Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO). Melchor Fernández Almagro, 3, 28029, Madrid, Spain. E-mail: jccigudosa@cnio.es. Phone: international +34.9.1224 6900. Fax: international +34.9.12246911.

Key words: FIP1L1/RARA, t(4;17)(q12;q21), 17q21, RARA rearrangements, APL, AML-M3.
REFERENCES

LEGEND TO FIGURE 1

Characterization of APL cells. (A) Morphology of the leukemia cells shows hypergranular promyelocytes with Auer rods in BM (100X). (B) A representative G-band karyotype of the aberrant clone. The arrow indicates the derivative chromosome 17. (C) The panel shows the representative ideogram of the gain (40.8Mb) in chromosome 17q21.2q25.3, which results in the partial gain of the RARA locus and a possible rearrangement of this gene (arrow). (D) The sequence analysis of the identified fusion gene from the reverse sequence of RARA exon 3 identified FIP1L1 at exon 13 as the fusion partner gene. (E) Confirmation of the presence of the two reciprocal fusion transcripts by RT-PCR. Line 1: FIP1L1-RARA detection with a forward primer on FIP1L1 exon 10 (5′- ACAGCAGGGAAGAATTGGA -3′), and a reverse primer on
RARA exon 3 (5'- CCCATAGTGGTAGCCTGAG). Line 3: RARA-FIP1L1 detection with a forward primer on RARA exon 1 (5'- ACACACCTGAGCAGCATC -3'), and a reverse primer on FIP1L1 exon 18 (5'- GTTAGCTTCCGTGCTCC -3'). Lanes 2 and 4 are negative controls.