Managing individuals with propensity to myeloid malignancies due to germline RUNX1 deficiency

by Tim Ripperger, Marcel Tauscher, Detlef Haase, Frank Griesinger, Brigitte Schlegelberger, and Doris Steinemann

Haematologica 2011 [Epub ahead of print]

Citation: Ripperger T, Tauscher M, Haase D, Griesinger F, Schlegelberger B, and Steinemann D. Managing individuals with propensity to myeloid malignancies due to germline RUNX1 deficiency. Haematologica. 2011; 96:xxx

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.

Haematologica (pISSN: 0390-6078, eISSN: 1592-8721, NLM ID: 0417435, www.haematologica.org) publishes peer-reviewed papers across all areas of experimental and clinical hematology. The journal is owned by the Ferrata Storti Foundation, a non-profit organization, and serves the scientific community with strict adherence to the principles of open access publishing (www.doaj.org). In addition, the journal makes every paper published immediately available in PubMed Central (PMC), the US National Institutes of Health (NIH) free digital archive of biomedical and life sciences journal literature.

Support Haematologica and Open Access Publishing by becoming a member of the European Hematology Association (EHA) and enjoying the benefits of this membership, which include participation in the online CME program.
Managing individuals with propensity to myeloid malignancies due to germline RUNX1 deficiency

Tim Ripperger,¹ Marcel Tauscher,¹ Detlef Haase,² Frank Griesinger,³ Brigitte Schlegelberger,¹ and Doris Steinemann¹

¹Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany; ²Department of Hematology and Oncology, Georg August University, Göttingen, Germany; and ³Department of Radiotherapy and Medical Oncology, Pius Hospital Oldenburg, Oldenburg, Germany

Correspondence
Doris Steinemann, Institute of Cell and Molecular Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
Phone: international +49.511.5324523 Fax: international +49.511.5324521.
E-mail: steinemann.doris@mh-hannover.de

Acknowledgments
The authors would like to thank the participating patient and his family, and Gillian Teicke for her excellent assistance in editing the manuscript.

Funding
TR was funded by a grant from Hannover Biomedical Research School, Graduate School of Excellence, PhD Program Molecular Medicine, Hannover Medical School, Hannover, Germany.
With great interest we read the recent review on familial myelodysplastic syndromes (MDS) published in this journal by Liew and Owen.\(^1\) Besides telomere disorders and familial monosomy 7, the review focused on familial platelet disorder with propensity to myeloid malignancies (FPDMM) and also surveyed syndromic cases of heterozygous loss of chromosome 21q22. To further highlight the clinical diversity of FPDMM and to discuss challenges of the clinical management of patients with germline \textit{RUNX1} deficiency, we report here on a patient with a constitutional loss of \textit{RUNX1} due to a \textit{de novo} deletion of 21q22.

Due to chronic, idiopathic thrombocytopenia, retrospectively found to have been present already in childhood, mild anemia and neutropenia, cytogenetic investigations were performed in a 19-year-old patient and displayed a loss of one \textit{RUNX1} allele in bone marrow cells. There was no evidence of MDS or acute myeloid leukemia (AML). Following genetic counseling, karyotyping and fluorescence \textit{in situ} hybridization of phytohemagglutinin-stimulated peripheral blood cells confirmed a heterozygous deletion in 21q22 (Figure 1A, Supplementary Data 1). High-resolution array comparative genomic hybridization (aCGH) displayed a 1.6 Mb deletion in the long arm of a chromosome 21 involving among others \textit{RUNX1} (Figure 1B). Breakpoint spanning long-distance PCR reconfirmed the deletion in DNA isolated from peripheral blood and a buccal swab (Figure 1C). Mutations of the remaining \textit{RUNX1} allele were excluded by DNA sequencing.

In contrast to the reviewed syndromic cases with deletions in 21q22 that - with the exception of one case\(^2\) - displayed a complex phenotype,\(^1\) our patient did not show growth or developmental delay, dysmorphic features or other abnormalities. Most of the previously reported patients were described in early childhood, when a complex phenotype probably prompted cytogenetic analyses. However, as demonstrated by our patient, deletions of 21q22 including \textit{RUNX1} do not necessarily lead to a complex phenotype, highlighting again the clinical variability of FPDMM.\(^1\)

In view of the early onset of leukemias in 3 out of 12 patients, Liew and Owen hypothesized that the age of leukemic transformation seems to be earlier in patients with deletions in 21q22 than in classical FPDMM.\(^1\) Despite detailed morphological and cytogenetic investigations, there was no evidence of MDS or AML in our 19-year-old patient, although he carries a deletion similar to that seen in the case\(^2\) of non-syndromic thrombocytopenia with myelodysplasia. Moreover, we recently reported on a patient with a \textit{RUNX1} mutation displaying a malignant transformation.
by the age of 13, indicating that in RUNX1 mutation carriers early onset of leukemia is also possible. It is known that secondary genetic alterations are required for the development of leukemia in FPDMM. Possibly, the age of onset depends more on the time and nature of additionally acquired alterations than on the presence of a deletion or mutation of RUNX1.

As pointed out by Liew and Owen, there is fortunately an increased awareness of FPDMM. In addition, the report on the association of RUNX1 mutation with thrombocytopenia, bone marrow blasts, and poor overall survival in patients with MDS will further increase the number of patients with germline RUNX1 deficiency. While there is an estimated risk of up to 60% to develop MDS or AML in patients with FPDMM, no surveillance guidelines are available for these patients and their families. In cases presenting with overt leukemia, the clinical management is dictated by the disease and it is broadly accepted that bone marrow transplantations by donors carrying the familial mutation have to be avoided. But what can we offer otherwise healthy individuals, e.g. the patient reported herein or individuals identified during the screening as potential donors for a bone marrow transplant? We performed genetic counseling of the patient and his parents before we proceeded with further analyses and would recommend this as the standard operating procedure whenever possible. In addition, we recommended peripheral blood cell counts and clinical evaluation of the patient every six months. So far, regular investigations of bone marrow aspirates have not been scheduled. In view of the association of KCNE2, KCNE1, RCAN1 and CLIC6, also affected by the deletion (Figure 1B), with cardiac malformations and arrhythmias, the index patient was referred to a cardiologist. However, is that enough? Regarding the increased awareness of individuals with germline RUNX1 deficiency, efforts for the development of broadly accepted surveillance programs and clinical management guidelines for FPDMM are the next critical step and are urgently needed to translate the increased awareness of this disease into clinical utility for the affected individuals and their families.

Authorship and Disclosures
TR, BS, and DS co-ordinated the research, and wrote the manuscript with the assistance of DH and FG. FG recruited the patient and his family. TR, MT, DH, BS,
and DS performed the cytogenetic, and molecular investigations. The authors reported no potential conflicts of interest.
References

1. Liew E, Owen CJ. Familial myelodysplastic syndromes - a review of the literature. Haematologica 2011 May 23. [Epub ahead of print]

2. van der Crabben S, van Binsbergen E, Ausems M, Poot M, Bierings M, Buijs A. Constitutional RUNX1 deletion presenting as non-syndromic thrombocytopenia with myelodysplasia: 21q22 ITSN1 as a candidate gene in mental retardation. Leuk Res 2010;34:e8-12.

Figure 1. (A) ETV6/RUNX1 metaphase fluorescence in situ hybridization (FISH). Metaphase plates of PHA-stimulated peripheral blood cells of the index patient (1) and his parents (2, 3) were investigated using specific probes for RUNX1 (LSI AML1, 21q22, red) and ETV6 (LSI TEL, 12p13, green) (Vysis, Abott, LSI ETV6(TEL)/RUNX1(AML1) ES dual color translocation probe set, Wiesbaden, Germany). While metaphases of the index patient (1) displayed one red and two green signals indicative of a loss of one RUNX1 allele, the metaphases of the parents (2, 3) showed two red and two green signals. Interphase FISH analysis of 100 nuclei displayed the submicroscopic loss of one RUNX1 allele in 93 % of cell nuclei investigated. (B) High resolution oligo array comparative genomic hybridization (aCGH) of the index patient. DNA of peripheral blood cells was analyzed using a 400k oligo array following the manufacturer’s instructions (Agilent Technologies, Boeblingen, Germany). In comparison to a healthy control sample, aCGH displayed a 1.6 Mb deletion in the long arm of a chromosome 21 of the index patient which is probably due to a de novo rearrangement: arr 21q22.11q22.12(35,304,856-36,864,010)x1 dn. Below the ideogram of chromosome 21 from 21pter to 21qter, the aberration states based on normalized log2 transformed fluorescent intensity ratios are shown indicating the heterozygous interstitial deletion. Further on, an enlarged view of the aberrant region is given (chromosome 21: 31,912,522-37,106,477; 2.19Mb) displaying genes located within the region lost as well as some of the neighboring genes. The RUNX1 locus is highlighted in red. (C) Breakpoint spanning long-distance PCR. Using primers located within the last aCGH probes before and after the deletion detected, a breakpoint spanning PCR product of approximately 9 kb was generated in the index patient (lanes 5-8) while no product was seen in peripheral blood DNA samples of his parents (lane 3, 4) and a healthy control (lane 2). Analyses of DNA of several peripheral blood cell populations of the index patient displayed the deleted allele in CD34⁺ cells (CD34⁺, lane 5), cells of a mononuclear (MNC, lane 6), and a granulocytic cell fraction (GC, lane 7). Finally, in DNA of a buccal swab of the patient, the PCR product could also be amplified indicating the germline origin of the submicroscopic deletion in 21q (BS, lane 8). The identified de novo deletion is probably the result of a recombination between two L1PA2 long interspersed nuclear elements (LINE) that lie in the breakpoint region and display a sequence identity of 97 %.
Supplementary Data 1. Clinical synopsis.

In August 2004, diagnosis of bone marrow failure syndrome due to chronic thrombocytopenia, mild anemia and mild neutropenia; no evidence for myelodysplastic syndrome or overt leukemia; neutrophils 3.200/µl, hemoglobin 12.9 g/dl, thrombocytes 64.000/µl; no detection of platelet antibodies; ongoing decrease of thrombocytes down to approximately 30.000/µl, with a minimum of 20.000/µl in autumn 2010; meanwhile stable around 30.000/µl;

Histopathological investigation, bone marrow aspirate, July 2010:
Mildly elevated cellularity, reduced granulopoiesis, expanded erythropoiesis, no ring sideroblasts, some hypolobulated megakaryocytes, no excess of blasts, no lymphoma infiltration or overt leukemia; most likely toxic etiology with peripheral loss of thrombocytes and erythrocytes; as differential diagnosis, refractory cytopenia with multilineage dysplasia with atypical megakaryocytes and ineffective erythropoiesis was discussed, but finally, no clear evidence for myelodysplasia was seen;

Fluorescence in situ hybridisation, bone marrow aspirate, July 2010:
nuc ish 5p15.2(D5S23:D5S721x2),5q31(EGR1x2),cen7(CEP7x2),7q31(D7S522x2), cen8(CEP8x2),17p13.1(TP35x2),20q12(D20S108x2),cenX(CEPXx1),cenY(CEPYx1)[100], (AML1/RUNX1x1)[96/100];
Cytogenetic analysis, phytohemagglutinin-stimulated peripheral blood cells, July and September 2010:
46,XY[25].
ish 12p13(TELx2),del(21)(q22q22)(AML1/RUNX1-).
nuc ish 12p13(TELx2)[100],(AML1/RUNX1x1)[93/100];

Microarray-based comparative genomic hybridization (aCGH), 400k (Agilent), and long-distance PCR, February 2010:
arr 21q22.11q22.12(35,304,856-36,864,010)x1 dn; the interstitial deletion was reconfirmed by long-distance PCR in DNA of several blood cell populations and buccal swabs;

DNA-based mutation analyses of RUNX1, February 2010:
Molecular investigations of ENST00000344691, exon 1-6, ENST00000300305, exon 1, 2, and ENST00000358356, exon 5; no evidence for a mutation in the remaining RUNX1 allele.