Genomic analysis of high risk smoldering multiple myeloma

by Lucia Lopez-Corral, Maria V. Mateos, Luis A. Corchete, Maria E. Sarasquete, Javier de la Rubia, Felipe de Arriba, Juan Jose' Lahuerta, Ramon Garcia-Sanz, Jesus F. San Miguel, and Norma C. Gutierrez

Haematologica 2012 [Epub ahead of print]

Citation: Lopez-Corral L, Mateos MV, Corchete L, Sarasquete ME, de la Rubia J, de Arriba F, Lahuerta JJ, Garcia-Sanz R, San Miguel JF, and Gutierrez NC.
Genomic analysis of high risk smoldering multiple myeloma.
Haematologica. 2012; 97:xxx

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.

Haematologica (pISSN: 0390-6078, eISSN: 1592-8721, NLM ID: 0417435, www.haematologica.org) publishes peer-reviewed papers across all areas of experimental and clinical hematology. The journal is owned by the Ferrata Storti Foundation, a non-profit organization, and serves the scientific community with strict adherence to the principles of open access publishing (www.doaj.org). In addition, the journal makes every paper published immediately available in PubMed Central (PMC), the US National Institutes of Health (NIH) free digital archive of biomedical and life sciences journal literature.
Genomic analysis of high risk smoldering multiple myeloma

Lucía López-Corra1, María Victoria Mateos1, Luis A. Corchete1, María Eugenia Sarasquete1, Javier de la Rubia2, Felipe de Arriba3, Juan-José Lahuerta4, Ramón García-Sanz1, Jesús F. San Miguel1, and Norma C. Gutiérrez1

1Servicio de Hematología del Hospital Universitario de Salamanca y Centro de Investigación del Cáncer-IBMCC (USAI-CIC), Universidad de Salamanca, Salamanca, Spain; 2Servicio de Hematología del Hospital de la Fe, Valencia, Spain; 3Servicio de Hematología del Hospital Morales Meseguer, Murcia, Spain, and 4Servicio de Hematología del Hospital 12 de Octubre, Madrid, Spain

KEY WORDS: Gene expression profile, SNP array, FISH, Smoldering myeloma.

Correspondence
Jesús F. San Miguel, Departament of Hematology, University Hospital of Salamanca, Paseo San Vicente, 58-182, Salamanca, 37007, Spain. Phone: international +34.9.23291384. Fax: international +34 923294624. E-mail: sanmigiz@usal.es

Acknowledgments
The authors thank “Grupo Español de Mieloma” clinicians for providing MM samples and S. González, I. Rodriguez, I. Isidro, T. Prieto y V. Gutiérrez for technical assistance.

Trial registration: Clinical Trials NCT00443235

Funding
This study was partially supported by Spanish FIS (PI080568, PS09/01450 and PS0901897), “Gerencia Regional de Salud, Junta de Castilla y León” (GRS 702/A/11) grant, and the Spanish Myeloma Network Program (RD06/0020/0006).
Abstract

Smoldering myeloma is an asymptomatic plasma cell dyscrasia with a heterogeneous propensity to progress to active myeloma. In order to investigate the biology of smoldering myeloma patients with high-risk of progression, we analyzed the genomic characteristics by FISH, SNP-arrays and gene expression profile of a group of patients with high-risk smoldering myeloma included in a multicenter randomized trial. Chromosomal abnormalities detected by FISH and SNP-arrays at diagnosis, were not associated to risk of progression to symptomatic myeloma. However, the overexpression of four SNORD genes (SNORD25, SNORD27, SNORD30 and SNORD31) was correlated with shorter time to progression ($P < 0.03$). When plasma cells from high-risk smoldering patients who progressed to symptomatic myeloma were sequentially analyzed, newly acquired lesions together with an increase in the proportion of plasma cells carrying a given abnormality, were observed. These findings suggest that gene expression profiling is a valuable technique to identify smoldering myeloma patients with high-risk to progression.

Clinical Trials NCT00443235

Introduction

Smoldering multiple myeloma (SMM) is an asymptomatic plasma cell dyscrasia with a high propensity to progress to symptomatic myeloma (MM).1,2 It meets all the diagnostic criteria for MM, but without lytic bone disease, anemia, renal failure, or hypercalcemia (CRAB symptoms).3 Due to the risk of progression to symptomatic MM (approximately 10% per year), SMM patients need strict and frequent follow-up.2 Globally, the median time to progression (TTP) is around four years, although this figure is highly variable as some patients have MGUS-like clinical behavior and others progress to active MM in a short time, which could be considered as early MM. Therefore, the identification of reliable biological markers to predict which SMM patients will progress, and which not, is of genuine importance.$^4-9$ In this context, the Mayo Clinic model underscores clonal plasma cell (PC) burden in bone marrow (BM) (> 10%) with high monoclonal component (MC) values (> 3 g/dl) and skewed free light-chain ratios as a high-risk factors with a median TTP of less than two years.2,10 Our group has added the role of the multiparametric flow cytometry techniques for identifying aberrant PC populations (> 95% of total PC) together with the immunoparesis.11
Currently, SMM patients do not receive any treatment until progression to symptomatic MM. This “watch and wait” approach is based on clinical trials in which early treatment intervention was not associated with survival benefit. However, it should be pointed out that patients included in those trials were not stratified with respect to their risk of progression to symptomatic MM. Due to the heterogeneous course of SMM patients, it does not seem appropriate to adopt a homogeneous approach, because it is possible that, while low-risk patients would not benefit from early treatment, those at high risk might benefit from early antmyeloma therapy. In line with this hypothesis, our group is conducting a multicenter randomized clinical trial designed to assess the TTP to symptomatic MM, and the efficacy and toxicity of a Lenalidomide-Dexamethasone (Len-Dex) schedule vs no treatment (abstention arm) in patients with high-risk SMM (HR-SMM).

This trial has given us the opportunity to investigate the genomic characteristics of a group of patients with HR-SMM accurately defined on the basis of inclusion criteria described in the trial. Accordingly, FISH studies, genome-wide profile using SNP-mapping arrays and gene expression analysis were used to ascertain whether the genomic abnormalities allow us to better define SMM patients with different clinical outcomes.

Design and Methods

Patients
A total of 123 HR-SMM patients were randomized to receive nine Len-Dex cycles plus maintenance (intervention arm) vs no treatment (abstention arm). HR-SMM were defined by the presence of more than 10% PCs in BM and a MC of IgG >3 g/dL, IgA >2 g/dL, or Bence Jones proteinuria > 1 g/24h together with the absence of CRAB. Patients meeting either, but not both, of these two criteria were also included in the study if they met the additional criterion of having ≥ 95% phenotypically aberrant PC from the total BMPC compartment (aPC/BMPC) plus immunoparesis. The study was approved by the research ethics committees of all participating centers and written informed consent was obtained from all patients in accordance with the Helsinki Declaration.
Sample preparation

BM samples were collected at the time of inclusion, at symptomatic progression and after nine months of either treatment or abstention. In all the BM samples, CD138-positive PC selection (purity > 95%) was carried out using the AutoMACs separation system (Miltenyi-Biotec, Auburn, CA, USA). PCs were frozen in RLT buffer (Quiagen, Valencia, CA, USA) and nucleic acids were then extracted using commercially available kits (Allprepkit, Qiagen, Valencia, CA, USA) according to the manufacturer's instructions. RNA and DNA quality and quantity were determined using 2100 Bioanalyzer (Agilent, Palo Alto, CA, USA) and ND-1000 Spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA), respectively.

Interphase fluorescence in situ hybridization analysis

Fluorescence in situ hybridization (FISH) analysis was performed in all samples at diagnosis and in 11 samples at symptomatic progression. The systematic screening for genomic aberrations in our institution includes FISH studies for detecting IGH rearrangements - t(11;14)(q13;q32), t(4;14)(p16;q32) and t(14;16)(q32;q23) - with the corresponding dual-color, dual-fusion translocation probes (Abbott Molecular/Vysis), 13q (LSI 13, RB1 13q14) and 17p deletions (LSI p53, 17p13.1) (Abbott Molecular/Vysis), and 1q gains (on 1q21/SRD 1p36, Kreatech Diagnostics, Amsterdam). FISH results of 80% of the patients included in the present study have been previously reported.

Gene expression profiling and SNP-array studies

The gene expression profiling (GEP) was investigated using Human Gene 1.0 ST (Affymetrix, Santa Clara, CA, USA) in 33 samples at the time of inclusion and six at the time of progression. Differentially expressed genes were identified using Significant Analysis of Microarrays (SAM). Genome-wide detection of copy number abnormalities and loss of heterozygosity (LOH) was also performed in 20 samples at diagnosis using the Genome-Wide Human SNP Array 6.0 assay protocol (Affymetrix, Santa Clara, CA, USA). The complete dataset was analyzed by visual inspection using the Genotyping Console 4.0 (Affymetrix) and Chromosome Analysis Suite (ChAS) software (Affymetrix).
Statistical analysis

SPSS version 15.0 (SPSS Inc.) was used for statistical analysis. The X^2 and Fisher’s exact tests were used to examine the association between genetic abnormalities and other categorical variables. TTP distribution curves were plotted using the Kaplan-Meier method: the log-rank test was used to estimate the statistical significance of differences between the curves. P values < 0.05 were considered to be statistically significant.

Results and Discussion

MM is often the final step in the transformation of two premalignant conditions, MGUS and SMM, which have a very variable progression rate. Given the current treatment paradigm which consists of delaying treatment until CRAB symptoms start, MM is typically incurable using the available drugs. Therefore, an early therapeutic intervention, particularly in the SMM condition, could prevent or delay progression to MM, changing its adverse outcome. However, the lack of reliable clinical and biological criteria to predict the patients who will progress to MM hinder the development of individualized treatment for this group of patients. Even though the patients analyzed in the present study are SMM with a high risk of progression to MM, the time to progression remained rather variable. In an attempt to identify additional biological parameters useful to characterize the natural history of SMM progression, we explored genomic abnormalities by using FISH and SNP-arrays, together with GEP.

Chromosomal abnormalities assessed by FISH were identified in 91 (72%) of the 123 SMM patients. IGH translocations (tx) were observed in 52/123 (42%), 1q gains in 47/114 (41%), 13q deletions in 51/122 (42%), whereas 17p deletions were present in 9/123 (7%). The distribution of IGH tx according to 14q32 partners were: t(4;14) in 15/123 (12%), t(11;14) in 21/123 (17%), t(14;16) in 7/122 (6%) and IGH rearrangements with another unknown partner in 10/123 (8%). After a median follow-up of 24 months, 23/61 (38%) patients progressed to symptomatic MM in the abstention arm. When we analyzed the frequency of each of the chromosomal abnormalities in the group of patients who progressed to active MM, we did not find any statistically significant differences with regard to the SMM patients who did not progress. Even when genetic abnormalities were grouped as high or standard risk, no statistical differences were observed. Using the Kaplan-Meier method revealed no differences in the TTP in the aforementioned comparisons. For the patients
allocated to the treatment arm, we tested whether chromosomal abnormalities detected by FISH were capable of discriminating Len-Dex response. To do this, we categorized patients in two ways: (1) responders (stringent complete remission, sCR; complete remission, CR; very good partial response, VGPR; and partial response, PR) vs non-responders (stable disease, SD and progression disease, PD), and (2) CR responders (sCR and CR) vs non-CR responders (VGPR, PR, SD and PD). There were no significant differences in either comparison. However, it should be pointed out that the percentage of t(4;14) was higher in non-responders and non-CR responders than in responders and CR responders, respectively (17% vs 7% and 25% vs 12%), although the differences were not statistically significant. Thus, we could not identify a high-risk group using FISH. Nevertheless, as the FISH analysis only examined a small number of chromosomal abnormalities, the next step was to perform a high-resolution analysis of genomic imbalances by high-density 6.0 SNP-array, which scans the genome at 680-bp intervals on average. Thus, 20 patients at diagnosis were analyzed by SNP-arrays. The number and type of copy number abnormalities (CNA), the presence of homozygous deletions (HZD) and copy number-neutral LOH (CNN-LOH) were explored. Chromosomal imbalances were identified in 17 (85%) of the 20 patients analyzed. Overall, 166 DNA CNA were detected, with a median of 7.5 imbalances per abnormal case (range, 0-23). CNN-LOH was detected in five of the 20 patients and HZD in two of the 20 patients. The comparison between the 13 patients who progressed to symptomatic MM and the seven who remained stable showed no significant differences in these DNA abnormalities, although further studies extending the number of patients could be needed to confirm these results.

GEP was investigated in 33 patients (18 and 15 in the abstention and treatment arm, respectively). After a median follow up of 29 months, 13/18 (72%) patients from the abstention arm progressed to symptomatic MM, with a median TTP of 25 months. When we compared the GEP of these patients to those without CRAB, we found no differentially expressed genes between the two groups. However, this stratification of patients by progression status has the potential bias of including within the progression group both early (first 12 months) and late progressions (more than three years after diagnosis). Moreover, within the group that did not progress to symptomatic MM, the follow-up of patients was also heterogeneous (13 vs 41 months from inclusion in the trial). Therefore, to compare the most highly contrasted situations, we selected the four patients without progression after more than 30 months follow-up and the four patients with symptomatic progression in the first 10
months since inclusion. Overexpression of five genes (RAD17, SNORD25, SNORD27, SNORD30 and SNORD31) in the SAM analysis was observed in the unfavorable group (Figure 1). We then tried to validate these results in the global group using the Kaplan-Meier method. To define high and low expression levels of these five genes, we selected a cut-off value close to the median for each of them. We found that the median TTP was significantly shorter in SMM patients with high expression levels of SNORD25, SNORD27, SNORD30 and SNORD31 (Figure 2). Although overexpression of RAD17 was associated with short TTP, the differences were not statistically significant. In conclusion, although GEP was very homogeneous independently of the clinical evolution, it should be noted that SMM patients who developed symptomatic MM displayed high expression levels of SNORD25, SNORD27, SNORD30, SNORD31 and RAD17. Interestingly, four of the five differentially expressed genes were small nucleolar RNA molecules (snoRNA). These non-coding RNAs (ncRNA), although less well known than other ncRNAs, such as miRNAs and siRNAs, could be actively involved in the development of cancer. For example, SNORA42 has been shown to act as a potential oncogene in the development and progression of lung cancer. Moreover, homozygous and heterozygous deletions in U50, a C/D snoRNA, have been described in prostate and breast cancer tissues respectively. On the other hand, there are some preliminary data showing that the genes that host snoRNAs might also contribute to cancer pathogenesis. Thus, the snoRNA host gene GAS5 controls apoptosis and is downregulated in breast cancer. In addition, RAD17 is a cell cycle checkpoint gene required for cell cycle arrest and DNA damage repair. Regarding the 15 patients treated with Len-Dex, we did not find a characteristic gene signature that predicted response to therapy.

We also wanted to investigate whether myeloma cells obtained at the time of progression had genomic modifications with regard to myeloma cells from the same patient at the time of diagnosis. For this purpose, we sequentially analyzed 11 SMM patients who progressed to symptomatic MM. Newly acquired lesions detected by FISH, together with an increase in the proportion of PCs carrying a given abnormality were observed. The genetic abnormalities of these patients are described in detail in Table 1. For this analysis we have focused on patients with genetic abnormalities in <90% of the malignant PCs, since otherwise an increase in the percentages cannot be evaluated. Accordingly, three of the four patients who already carried chromosomal abnormalities in <90% of PCs had a clearly higher percentage of PCs bearing such a genetic aberration at the time of transformation into
symptomatic MM. The proportion was doubled in one case, trebled in another, and increased from 68% to 92% in the third. Additionally, two SMM patients acquired a 17p deletion at the time of progression. When GEP was performed in 12 samples belonging to six control-arm patients before and after symptomatic progression, the paired SAM analysis did not detect significantly deregulated genes between the two groups.

In short, the present study identifies four SNORD genes upregulated in those SMM patients with rapid progression to symptomatic MM. Despite we failed to find chromosomal lesions associated to risk of progression, we observed an increase in the proportion of clonal PCs carrying a given abnormality, supporting the hypothesis that the number of genetically abnormal PC increases from high-risk SMM to active MM. Although this study is statistically limited by the relatively small number of patients since it is difficult to gather a large number of SMM patients with long-term follow-up, our findings are encouraging enough so as to validate them in further series and perform functional studies. In addition, the genomic analysis of those SMM with low-risk of progression to active MM could help to find a biological support to the low/high-risk SMM classification.

Authorship and Disclosures

L.L.C. and N.C.G. participated in the design of the study, carried out all genomic analysis, prepared the database for the final analysis and wrote the paper. M.E.S. and L.A.C participated in the bioinformatics’ analysis of the study. J.R., F.A. and J.L. are clinicians who contributed to collection samples. R.G-S. participated in the design of the study and supervised the statistical analysis of the study. MV.M and J.F.S.M were the initial persons promoting the study and they participated in the final approval of the version to be published.

The authors declare no competing financial interests.
References

Disease: A Phase III, Randomized, Multicenter Trial Based On Lenalidomide-Dexamethasone (Len-Dex) as Induction Therapy Followed by Maintenance Therapy with Len Alone Vs No Treatment. ASH Annual Meeting Abstracts 2010;116(21):1935.

17. Gutierrez NC, Castellanos MV, Martin ML, Mateos MV, Hernandez JM, Fernandez M, et al. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 2006;21(1):143-50.

Table 1. FISH evolution of 11 patients who developed symptomatic disease.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Disease at diagnosis</th>
<th>% of PC with genetic abnormalities</th>
<th>Disease at progression</th>
<th>% of PC with genetic abnormalities</th>
<th>TTP (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HR-SMM</td>
<td>No abnormalities</td>
<td>MM</td>
<td>17p deletion (28%)</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>HR-SMM</td>
<td>1q gain (96%)</td>
<td>MM</td>
<td>Rb (27%), 1q gain (28%), 17p deletion (28%)</td>
<td>19</td>
</tr>
<tr>
<td>3*</td>
<td>HR-SMM</td>
<td>Rb deletion (22%); P53 deletion (24%)</td>
<td>MM</td>
<td>Rb deletion (3%); P53 deletion (86%)</td>
<td>14</td>
</tr>
<tr>
<td>4*</td>
<td>HR-SMM</td>
<td>1q gain (78%)</td>
<td>MM</td>
<td>1q gain (92%)</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>HR-SMM</td>
<td>Rb deletion (31%)</td>
<td>MM</td>
<td>Rb deletion (62%)</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>HR-SMM</td>
<td>Rb deletion (92%); 1q gain (90%)</td>
<td>MM</td>
<td>Rb deletion (64%), 1q gain (98%)</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>HR-SMM</td>
<td>IgH translocation (32%)</td>
<td>MM</td>
<td>IgH translocation (28%)</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>HR-SMM</td>
<td>No abnormalities</td>
<td>MM</td>
<td>No abnormalities</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>HR-SMM</td>
<td>No abnormalities</td>
<td>MM</td>
<td>No abnormalities</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>HR-SMM</td>
<td>No abnormalities</td>
<td>MM</td>
<td>No abnormalities</td>
<td>29</td>
</tr>
<tr>
<td>11*</td>
<td>HR-SMM</td>
<td>1q gain (92%)</td>
<td>MM</td>
<td>1q gain (98%)</td>
<td>17</td>
</tr>
</tbody>
</table>

* These FISH results have been previously published (López-Corral et al., 2011).
Legend to Figures

Figure 1. Expression of RAD17, SNORD25, SNORD27, SNORD30 and SNORD31 by microarrays in high-risk SMM patients who progressed to symptomatic MM and those who remained with stable disease.

Figure 2. Progression-free survival in SMM patients with respect to SNORD 25, SNORD 27, SNORD 30 and SNORD 31 gene expression levels.
Low expression of SNORD 25
High expression of SNORD 25

Low expression of SNORD 31
High expression of SNORD 31

Low expression of SNORD 30
High expression of SNORD 30

Low expression of SNORD 27
High expression of SNORD 27

Percentage free of progression

N Median (range)
16 NR
17 24 (17.5-30.4)

P=0.02

N Median (range)
18 NR
15 24 (12.9-35)

P=0.017

N Median (range)
16 NR
17 24 (17.5-30.4)

P=0.03

N Median (range)
20 36
13 17 (20.7-33)

P=0.003