Report from the European Myeloma Network on Interphase FISH in Multiple Myeloma and Related Disorders

Haematologica 2012 [Epub ahead of print]

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.

Haematologica (pISSN: 0390-6078, eISSN: 1592-8721, NLM ID: 0417435, www.haematologica.org) publishes peer-reviewed papers across all areas of experimental and clinical hematology. The journal is owned by the Ferrata Storti Foundation, a non-profit organization, and serves the scientific community with strict adherence to the principles of open access publishing (www.doaj.org). In addition, the journal makes every paper published immediately available in PubMed Central (PMC), the US National Institutes of Health (NIH) free digital archive of biomedical and life sciences journal literature.

Support Haematologica and Open Access Publishing by becoming a member of the European Hematology Association (EHA) and enjoying the benefits of this membership, which include participation in the online CME program.
Report from the European myeloma network on interphase FISH in multiple myeloma and related disorders

Fiona M. Ross, Hervé Avet-Loiseau, Geneviève Ameye, Norma C. Gutiérrez,
Peter Liebisch, Sheila O’Connor, Klara Dalva, Sonia Fabris, Adele M. Testi,
Marie Jarosova, Anna Collin, Gitte Kerndrup, Petr Kuglik, Dariusz Ladon,
Paolo Bernasconi, Brigitte Maes, Zuzana Zemanova, Kyra Michalova,
Lucienne Michau, Kai Neben, N. Emil U. Hermansen, Katrina Rack,
Alberto Rocci, Rebecca Protheroe, Laura Chiecchio, Hélène A Poirel,
Pieter Sonneveld, Mette Nyegaard+, Hans E. Johnsen on behalf of the
European Myeloma Network

1Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK;
2Clinical Hematology Department and the Hematology Laboratory, University Hospital,
Nantes, France; 3Human Genetic Center of UCL Cliniques universitaires saint-Luc Brussels;
4Hematology Department, University Hospital Salamanca, Spain; 5University Hospital of Ulm,
Department of Internal Medicine III, Ulm, Germany; 6HMDS, Bexley Wing, St James’s Institute
of Oncology, Leeds, UK; 7Department of Hematology, Ibni Sina Hospital, Ankara University,
Ankara, Turkey; 8Medical Sciences Department, University of Milan and Hematology 1,
Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy;
9Department Diagnostic Pathology and Laboratory Medicine Fondazione IRCCS Istituto
Nazionale Tumor Milano; 10Department of Hemato-oncology University Hospital, Olomouc,
Czech Republic; 11Department of Haematology, Haemato-Oncology Laboratory, Belfast HSC
Trust, Belfast City Hospital, Belfast, Northern Ireland, UK; 12Department of Clinical Genetics,
University and Regional Laboratories, Skåne University Hospital, Lund University, Lund,
Sweden; 13Department of Clinical Genetics, Vejle Hospital, Denmark; 14Laboratory of
Molecular Cytogenetics, Babak Research Institute Faculty of Medicine, Masaryk University,
Brno, Czech Republic; 15Department of Haematological Medicine, King’s College, London, UK;
16Division of Hematology, Fondazione Policlinico San Matteo IRCCS, Pavia, Italy;
17Molecular Biology, Clinical Laboratory, Virga Jesse Hospital, Hasselt, Belgium;
18Center of Oncocytogenetics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General Teaching Hospital and 1st Medical Faculty of Charles University, Prague, Czech Republic; 19Center for Human Genetics, Catholic University of Leuven, Leuven, Belgium; 20Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg Germany; 21Department of Haematology, the National Hospital, Copenhagen, Denmark; 22Centre for Human Genetics, Institut de Pathologie et de Génétique, Gosselies, Belgium; 23University of Turin, Department of Hematology, San Giovanni Battista Hospital, Turin, Italy; 24Dept of Hematology, Erasmus MC, Rotterdam, the Netherlands; 25Department of Haematology, the Research Laboratory, Aalborg Hospital Science & Innovation Center, Aarhus University Hospital, 9000 Aalborg, Denmark, and 26The European Myeloma Network (www.myeloma-europe.org), Secretariat, Aalborg Hospital Science & Innovation Center

Key Words: Myeloma, cytogenetic, interphase FISH, recommendation.

Running Title: Workshop Report on Interphase FISH in Multiple Myeloma

Funding
This project has been supported by the European Myeloma Network an independent organization supporting research in Europe and in part by the Danish Research Council #2101-07-0007. HEJ was supported by the EU 6th FP to MSCNET (LSHC-CT-2006-037602). The workshops were supported by unrestricted grants to HA-L from Abbott Molecular, Janssen-Cilag and Celgene.

Correspondence
Hans E Johnsen MD DMSc, Professor, Clinical Haematology Aalborg Hospital Science and Innovation Centre (AHSIC), Aarhus University Hospital Sdr Skovvej 15, DK-9000 Aalborg Denmark. Phone: international +45.99.326875. Mobil +45.41.180053.
E-mail: haej@rn.dk
Home page: www.blodet.dk
ABSTRACT

The European Myeloma Network has organized two workshops on fluorescence in situ hybridization in multiple myeloma. The first aimed to identify specific indications and consensus technical approaches of current practice. A second workshop followed a quality control exercise in which 21 laboratories analysed diagnostic cases of purified plasma cells for recurrent abnormalities. The summary report was discussed at the EHA Myeloma Scientific Working Group Meeting 2010.

During the quality control exercise there was acceptable agreement on more than 1000 tests. The conclusions from the collaboration were that the primary clinical applications for FISH analysis were for newly diagnosed cases of MM or frank relapse cases. A range of technical recommendations included: 1) Material should be part of the first draw of the aspirate; 2) Samples should be sent at suitable times that allow for the lengthy processing; 3) Most importantly PCs must be purified or specifically identified; 4) Positive cut-off levels should be the relatively conservative, 10% for fusion or break-apart probes and 20% for numerical abnormalities; 5) Informative probes should be combined to best effect; 6) In specialist laboratories a single experienced analyst is considered adequate; 7) At least 100 PC should be scored; 8) Essential abnormalities to test for are t(4;14), t(14;16) and 17p13 deletions; 9) Suitable commercial probes are available for clinically relevant abnormalities; 10) The clinical report should be expressed clearly and must state the percentage of PC involved and method used for identification; 11) A retrospective European based FISH data bank linked to clinical data should be generated and 12) Prospective analysis should be centralized for upcoming trials based on the recommendations.

EMN aims to build on these recommendations to establish standards for a common European database to define subgroups with prognostic significance.
INTRODUCTION

Multiple Myeloma (MM) is an orphan disorder of end stage plasma cells with acquired genetic abnormalities of clinical importance not captured by conventional cytogenetic analysis (1). The acquired genetic evolution progresses through a stepwise transformation process initiated in half of the cases by a reciprocal translocation involving the IGH gene (14q32). Translocations involving this region show an array of promiscuous target genes including cyclin D1, D3, FGFR3/MMSET, MAF, and MAFB (2-9). In addition, secondary translocations have been observed in 50% during disease progression (2, 3, 10-13).

The introduction of high-dose therapy and a range of new promising agents have changed the prognosis and extended the therapeutic possibilities. In parallel the use of molecular cytogenetic techniques has led to the identification of recurrent genetic abnormalities with major prognostic impact and predictive information (14-18). However, the fact that the malignant clone in MM differs from other hematological malignancies due to a high fraction of low proliferating malignant PC and multiple marrow infiltrates has been a challenge for standardization of cytogenetic analysis. Comparative genomic hybridization studies have confirmed that nearly all myelomas have karyotypic changes and interphase fluorescence in-situ hybridization (FISH) has emerged as the most useful current cytogenetic assessment (18, 19). However it requires the identification or selection of the malignant cells by morphology, immunophenotyping or through sorting of PC before FISH probes can give reliable results.

Therefore the European Myeloma Network sponsored two technical workshops attempting to identify specific indications and to resolve outstanding technical issues and develop consensus approaches for interphase FISH analysis based on current practice. This report combines the practical guidelines derived from consensus views and group data analysis performed at these workshops. Final recommendations for which FISH tests must be done are those of the IMWG as these are considered the most up to date data (18, 19), although chromosome 1 probes are also strongly recommended.
THE COLLABORATIVE STRATEGY AND THE QUALITY CONTROL EXERCISE

The first workshop in London was organized by Fiona Ross, where 31 European laboratories participated after returning a questionnaire on local analysis methodology. Following presentations focused on clinician needs (Brian Durie), pros & cons of PC purification (Hervé Avet-Loiseau), pros and cons of simultaneous immunostaining (Johannes Drach), identification of PC by morphology in FISH preparations (Sheila O’Connor) and finally presentation of the questionnaire results (Fiona Ross) the rest of the meeting was devoted to the determination of recommendations.

The Quality Control results (Table 1 and 2)

Twenty one laboratories participated in the quality control (QC) exercise where Herve Avet-Loiseau shipped purified plasma cells from 10 diagnostic cases and asked the laboratories to test for t(4;14), t(11;14), t(14;16), del(13)(q14) and del(17)(p13) provided that they had the requisite probes. The QC exercise therefore only tested probe scoring ability without giving any information about the ability of the laboratories to select or identify PC. The results were presented and discussed at a second workshop in Nantes, which led to further refinement of the recommendations.

With 6 tests and 21 laboratories there was a theoretical total of 1260 tests in the exercise but 3 laboratories did not have the t(14;16) probe and a number of other tests were not attempted, probably due to a perceived shortage of material by those who normally used identification rather than purification and so were not used to handling extremely small numbers of cells. Thus 1173 tests were actually undertaken (Table 1 and 2). Although there was good general agreement, the results emphasised the difficulties of myeloma FISH. Twenty one tests failed. There were 15 false negative results (3 missed the major abnormalities of IGH break-apart, t(4;14) and t(11;14), plus one 17p deletion was only recorded as being below the conservative cut-off level, and 11 numerical abnormalities were not recorded in fusion probe tests). Eleven false positive results were reported, even using the conservative cut-off levels (1 del(13q), 3 del(17p), 3 IGH break-apart, 1 t(4;14), and 3 cases with CCND1 gains). In addition 3 IGH simple deletions were reported as rearrangements.

As well as these incorrect results there was a considerable range in both the proportion of abnormal cells reported in abnormal cases (up to 66% difference) and in the exact signal patterns for fusion and break-apart probes. The majority of the problems were shared out
between 16 of the 21 labs rather than any one lab performing consistently poorly. One lab did consistently record low numbers of affected cells in the abnormal cases but this did not translate into a high false negative rate. It is notable that at the time of the QC exercise several labs had only recently started doing MM FISH. It is to be hoped that greater familiarity and QC exercises will result in greater consistency of abnormality levels and fewer incorrect results.

EMN CONSENSUS FOR FISH ASSAYS IN MONOCLONAL GAMMOPATHIES

The following sections are a summary of the discussions of the key issues for FISH on BM samples at diagnosis with identification of consensus approaches where available. Unless otherwise stated, the methods refer to the characterization of PC in bone marrow samples.

1) DIAGNOSTIC MATERIAL, HANDLING AND PLASMA CELL IDENTIFICATION

Accurate quantitation of the plasma cell burden in bone marrow is essential for the correct diagnosis of plasma cell disorders. This is usually assessed from morphological examination of stained bone marrow aspirate smears or trephine sections. Some discrepancies exist with other techniques as the marrow samples taken for morphological review are often the highest quality “first-pull” marrow aspirate samples while those sent for laboratory investigations are often secondary aspirate samples with a higher degree of peripheral blood contamination. The commonly low median proportion of plasma cells, ranging from 1-20 %, within the bone marrow aspirates experienced by the InterGroupe Francophone du Myelome (IFM), LLR UK Myeloma Forum Cytogenetic Database and the Nordic Myeloma Study Group (NMSG) indicate that the FISH technique cannot be performed directly as in other hematological malignancies. The plasma cells need to be selected, either by a flow cytometry or immunomagnetic-bead based PC sorting or by the concomitant labeling of the cytoplasmic immunoglobulin light chain, enabling an unambiguous identification. More recently image analysis systems allowing morphological assessment of plasma cells and FISH scoring only in those cells designated as PC have become available. All of these methods give good results and the choice should be left to the preference of individual laboratories. However cell sorting results in a pure PC population which enables further analyses to be performed by e.g. global gene expression, copy number analyses and methylation. A significant fraction of samples will have too few PCs to allow such analyses and will censor some patients in subsequent clinical evaluation. A small
proportion will be too poor to yield enough purified cells even for FISH analysis, so it is advisable to have alternative methods available where comprehensive results are essential. Although laboratories involved in providing the FISH analysis for clinical trials will make every effort to ‘rescue’ poor samples, it is strongly recommended that referring clinicians should also maximise the chances of adequate results being obtained. This means that the material sent must be part of the first draw of the aspirate or the needle must be repositioned for further aspiration, rather than continuing to withdraw marrow blood from the puncture.

All methods require immediate processing of samples when received by the laboratory, which should be with minimum delay. They are also all time consuming so that referring clinicians must take into account how the sample is to be transported – ideally taking no longer than overnight – and not to arrive after midday on Fridays, or at weekends.

Given the problems with obtaining good specimens from diagnostic and relapse myeloma samples, it was agreed that FISH in plasma cell disorders with very low level marrow infiltration, such as MGUS, AL amyloidosis and myeloma disease monitoring remains firmly as a research activity. (NB there is beginning to be evidence that some abnormalities have a different prognosis when the patient relapses. The workshops did not discuss whether probe selection should change at relapse).

Material and identification consensus

- Sample quality is key and it is essential to use a “first-pull” or repositioned aspirate sample for FISH and other molecular studies to reduce sampling artefact;
- Timing of samples should take into consideration the processing which is time-consuming;
- Morphological assessment of plasma cell percentage is necessary for concordance with the current diagnostic criteria and is helpful in providing a global assessment of the sample. The morphological assessment of the bone marrow smears cannot be used to decide whether or not to purify the sample for FISH; this must be done on the part sent for analysis.
- Purification or identification of PC is essential but the method used should be decided by each laboratory from their own expertise and requirements in accordance with the EMN based technical recommendations.
- Cytogenetic analysis by FISH is reproducible with care and sufficient expertise and may provide reliable information predicting outcome in myeloma but further studies are required before it is routinely used to make treatment decisions outside the context of a
clinical trial. However, the evidence is good enough to suggest that clinical trials ought to incorporate diagnostic FISH analysis in order to interpret outcomes correctly. Routine analysis should be confined to diagnostic or relapse myeloma samples, with earlier stage disease and myeloma disease monitoring remaining a research activity for the present.

2) PROBE SELECTION

It was the experience that all 13q probes give similar results and there was no justification for recommending any particular probe or set of probes. Everyone had experience with the *IGH* break-apart probe. Its main benefit is to determine whether there is significant loss of the der(14) but this was not felt to be sufficiently important to insist on the use of this probe in light of the significant interpretation problems that it poses. Although all were happy with the various dual fusion probes used, there were significant variations between labs in the proportion of single and dual fusions reported in the positive t(4;14) and t(11;14) results on the quality assessment exercise. These differences were not simply due to using probes from different manufacturers.

Most labs using 1q probes had developed them in house. Where labs had used more than one probe the results confirmed that the majority of abnormalities are gain of the whole arm but several different probes showed discordant amplification in a few cases. The Cytocell Aquarius CDKN 2C/CKS1B probe is therefore a suitable commercial probe for chromosome 1. Many labs were using the Vysis 5/9/15 combination to estimate ploidy but there were no strong feelings about this. Subsequent work has suggested that 5q, rather than 5p, may be important for prognosis, therefore labs investigating ploidy may wish reconsider probe sets.

The objections to using two ‘deletion’ probes to control for each other expressed at the first workshop were withdrawn at the second workshop and in fact use of a 13q probe with a 17p probe was recommended as a sensible way to maximise use of small amounts of material.

The majority of labs were using Vysis probes which meant that we could not make any sensible comments about choice of probe manufacturer.

The determination of cut-off levels was the most controversial issue. At the first workshop there was an agreement for 10% for fusions and 20% for numerical abnormalities on the basis of plasma cell controls run by the few groups able to get such material. At the second workshop there was less agreement; a few labs preferred to use own in-house established mean +3SD from normal bone marrow controls and report anything above this as abnormal.
The significant variation in reporting levels seen on the QC exercise would appear to bolster the argument for conservative cut-off levels, as does the frequent need to use two probes which may be abnormal to control for each other due to the shortage of material. It should also be noted that in purified/selected populations diagnostic myeloma samples are expected to show essentially all cells to have the primary abnormality. However, other suggested prognostic markers are clearly secondary changes and may be present in only subpopulations. Hervé Avet-Loiseau reported that the IFM group used a 30% cut-off for del(13) and 50% for del17p on the basis of their own previous results. It was agreed that EMN should take the lead in collaboration between all centers running survival curves on data varying cut off levels to establish whether the size of the clone is important. Discussion around the number of cells to analyse was primarily concerned with suboptimal samples. It was agreed that wherever possible 100 cells should be scored, but there was disagreement about the minimum number of cells that could be reported. Where high purity/identified PC were being used, 50 cells should be adequate to report a normal result for a primary abnormality in a diagnostic situation, but for potential secondary changes the report should be qualified. In some situations a uniformly abnormal result on as few as 10 cells could be reported, but the uncertainty due to the low number should be clearly stated.

Probe selection consensus

- Abnormalities to test for are t(4;14)(p16;q32), t(14;16)(q32;q23) and 17p13 deletions. The recent availability of a 1p/1q commercial probe means that these areas should also be tested. An extended panel may include testing for t(11;14)(q13;q32), t(14;20), ploidy status and chromosome 12 and 13 abnormalities. In the context of clinical validation trials attempts should be made to test for more than just the 3 essential probes.
- Positive cut-off levels should be relatively conservative.
- A single experienced analyst is considered adequate to examine the majority of cases but all those with low level positive results or a low level of selected PC should be checked by a second analyst. At least two analysts should be used when laboratories first start FISH work.
- In general 100 PC should be scored.
3) CLINICAL REPORTING AND USE OF RESULTS

Each national or regional myeloma group has its own data registration system activated during clinical trials. Currently there is no standard minimal data set, thus inter-study comparability is hampered. One objective for EMN has been to construct a minimal set of clinical data to be collected from clinical trials available from different sources. This data set will be used to investigate correlations between results from laboratory investigations, clinical disease characteristics and results of therapeutic intervention.

In the absence of uniform reporting systems, the report to clinicians must be expressed clearly. Use of full FISH ISCN is likely to complicate the report and make it more difficult for clinicians to understand and therefore it is not recommended. The report should include the method used for PC identification, the probes used, the number of cells scored for each abnormality and the percentage of abnormal cells.

Clinical reporting consensus

• Reports should be clearly expressed and include the method used for PC identification, the probes used, the number and percentage of cells scored for each abnormality.
• A full set of EMN case report forms (CRF) should be defined with a minimal set of data that is required to describe the state of disease, relevant characteristics of diagnosis and clinical course, treatment effects and outcome and include demographic data of late effects.
• A European based FISH data bank linked to clinical data should be generated by the recommendations given in this report.
• Central laboratories have to perform the analysis in common clinical trials.

4) CLINICAL VALIDATION TRIALS

In general, the implementation of new tests into clinical practice suffers from the lack of a formalised stepwise system to evaluate their role and accelerate implementation from the laboratory bench to the clinic. New diagnostic, prognostic and predictive assays will have to pass different stages before they are successfully validated. Analogous to therapeutic trials four different phases (phase 1-4) are necessary for clinical validation of laboratory data and techniques. In the first phase, the technique is established in the laboratory and analysed for specificity, sensitivity, reproducibility and accuracy. The second phase documents the likely clinical influence in single centres analysing retrospective data. The third phase prepares
convincing single centre prospective evaluation evolving into the most important phase four, a multi centre prospective evaluation based upon important clinical end-points. Ideally, phases 2-3 document the usefulness of an assay convincing one or more centres to participate in prospective phase 4-validation trial. However, no phase 4 studies have yet been performed. Such development of evidence-based recommendations for good clinical practice will benefit from streamlined strategies and be backbone for trials focussing on improving in health care.

Clinical validation trials consensus

- Participation in prospective phase 4 validation trials is recommended.
- Slides should be prepared for central analysis to reduce technical and interlaboratory variations.

CONCLUSION

Fluorescence in situ hybridization (FISH) analysis, since its introduction, has revolutionized the field and enabled a more precise determination of the presence and frequency of genetic abnormalities. It is particularly indispensable in myeloma where metaphase cytogenetics has been difficult in the largely quiescent cells.

FISH probes have been used extensively in myeloma to detect nonrandom abnormalities in interphase nuclei and the true incidence of chromosome abnormalities has been proven to be much higher than that detected by conventional chromosomal analysis. The availability of a comprehensive line of commercial probes for rapid identification of critical genetic aberrations has contributed to the widespread use of this technique. This has started to identify high-risk populations in myeloma that can be targeted for aggressive therapy, but more work is needed to bring this goal to fruition.

Wherever possible, testing should be for t(4;14)(p16;q32), t(14;16)(q32;q23), 17p13 deletions (14-19), 1q gains (and 1p deletions in patients suitable for autograft) (20-21). An extended panel may include testing for t(11;14)(q13;q32), t(14;20)(q32;q12), ploidy status and chromosome 12 and 13 abnormalities. In the context of clinical validation trials attempts should be made to test for the entire first group of abnormalities.

For a proper understanding of the pathogenesis of plasma cell dyscrasias it should be realised that the major benefit will result from coordinating and integrating the present and future activities in the various countries.
This document provides some specific recommendations for performing FISH in myeloma and related disorders. The European Myeloma Network aims to build on these initial workshops to provide further education, establish standard approaches for specific protocols and establish a common European database with the goal to define the emerging molecular genetic subgroups with prognostic and predictive significance.
AUTHORSHIP AND DISCLOSURES

(a) All persons designated as authors have qualified for authorship according to the ICMJE criteria (http://www.icmje.org/sponsor.htm). All authors listed below have approved the final submission for publication. The contributions of each partner who participated in this collaborative project are given below.

Fiona Ross designed the 1st workshop performed analysis and interpretation and prepared the manuscript and revised it critically.

Herve´ Avet‐Loiseau designed the 2nd workshop, performed analysis and interpretation and prepared the manuscript and revised it critically.

Geneviève Ameye, Norma C. Gutiérrez, Peter Liebisch, Sheila O’Connor, Klara Dalva, Sonia Fabris, Adele M. Testi, Marie Jarosova, Anna Collin, Gitte Kerndrup, Petr Kuglik, Dariusz Ladon, Paolo Bernasconi, Brigitte Maes, Zuzana Zemanova, Kyra Michalova, Lucienne Michaux, Kai Neben, N. Emil U. Hermansen, Katrina Rack, Alberto Rocci, Rebecca Protheroe, Laura Chiecchio, Hélène A Poirel performed analysis and prepared the manuscript and revised it critically.

Pieter Sonneveld assisted in workshop design and revised the manuscript critically.

Mette Nyegaard assisted in interpretation and in preparing the manuscript.

Hans E Johnsen is corresponding author/guarantor and coordinator, assisted in workshop design, data collection, analysis and interpretation and prepared the manuscript.
REFERENCES

TABLES AND LEGENDS

TABLE 1. Summary of analysis of shipped samples.

<table>
<thead>
<tr>
<th>Laboratory Identity</th>
<th>Tests attempted§</th>
<th>Tests failed</th>
<th>Tests wrong</th>
<th>Number of cases in lowest 3 abnormal cell %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>60</td>
<td>0</td>
<td>1 + 1*</td>
<td>13</td>
</tr>
<tr>
<td>B</td>
<td>41</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>60</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td>60</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>60</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>41</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>60</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>60</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>59</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>M</td>
<td>42</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>60</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>54</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q</td>
<td>60</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>50</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>S</td>
<td>43</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>T</td>
<td>60</td>
<td>11</td>
<td>2 + 1*</td>
<td>4</td>
</tr>
<tr>
<td>U</td>
<td>60</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ Test of 10 purified PC cases for 6 probes.

1* indicates 14q32 possible variant pattern
Table 2. Summary of results by probe.

<table>
<thead>
<tr>
<th>Recurrent abnormality</th>
<th>Successful §</th>
<th>Failed</th>
<th>ND/R*</th>
<th>Abnormal cases (tests)</th>
<th>Median% abn cells</th>
<th>Range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>13q14</td>
<td>205</td>
<td>4</td>
<td>1</td>
<td>5 (105)</td>
<td>93</td>
<td>76-100</td>
<td>Abn cases: 1 test failed, all other tests reported as abn Normal cases: 1 test reported as abn (55% cells)</td>
</tr>
<tr>
<td>17p13</td>
<td>207</td>
<td>3</td>
<td>0</td>
<td>2 (42)</td>
<td>38</td>
<td>17-80</td>
<td>Abn cases: 1 test below 20% cut-off level. All others reported as abn Normal cases: 3 tests reported as abn (28, 34 & 38% cells)</td>
</tr>
<tr>
<td>14q32ba</td>
<td>184</td>
<td>6</td>
<td>20</td>
<td>7 (129)</td>
<td>92</td>
<td>40-100</td>
<td>Abn cases: 7 tests failed, 1 reported as normal, 3 incorrect pattern (indicating rearrangement rather than simple deletion). Variation in exact signal pattern Normal cases: 3 tests reported as abn, with 2 more as variant/abn</td>
</tr>
<tr>
<td>4;14</td>
<td>204</td>
<td>2</td>
<td>4</td>
<td>3 (61)</td>
<td>91</td>
<td>62-100</td>
<td>Abn cases: 1 test failed, 1 reported as normal. Variation in number of fusion signals. Normal cases: 1 test reported as 100% abn</td>
</tr>
<tr>
<td>11;14</td>
<td>202</td>
<td>4</td>
<td>4</td>
<td>5 (99) 2 t(11;14) plus 3 gain CCND1</td>
<td>89</td>
<td>35-100</td>
<td>Abn cases: 2 tests failed. 1 t(11;14) & 7 CCND1 gain reported as normal. Large variation in number of fusion signals reported. Normal cases: 3 tests reported as abnormal (1 gain of CCND1 in 45%, 2 unspecified pattern in 65 & 71%)</td>
</tr>
<tr>
<td>14;16</td>
<td>171</td>
<td>2</td>
<td>37</td>
<td>2 (31) 1 loss, 1 gain MAF</td>
<td>90</td>
<td>63-100</td>
<td>Abn cases: 2 loss and 2 gain cases reported as normal. No normal cases were reported as abnormal</td>
</tr>
</tbody>
</table>

abn indicates abnormal
*ND/R = not done or not recorded
** excluding case(s) scored as normal
§ Results from 21 laboratories and 10 cases means 210 possible results for each of the 6 probes.