ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases- a report from the ALCL99 study

by Ilske Oschlies, Jasmin Lisfeld, Laurence Lamant, Atsuko Nakazawa, Emanuele D' Amore, Ulrika Hansson, Konnie Hebeda, Ingrid Simonisch-Klupp, Jadwiga Maldyk, Leonhard Muellauer, Marianne Tinguely, Markus Stuecker, Marie-Cecile Ledeley, Reiner Siebert, Alfred Reiter, Laurence Brugieres, Wolfram Klapper, and Wilhelm Woessmann

Haematologica 2012 [Epub ahead of print]

doi:10.3324/haematol.2012.065664

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.

Haematologica (pISSN: 0390-6078, eISSN: 1592-8721, NLM ID: 0417435, www.haematologica.org) publishes peer-reviewed papers across all areas of experimental and clinical hematology. The journal is owned by the Ferrata Storti Foundation, a non-profit organization, and serves the scientific community with strict adherence to the principles of open access publishing (www.doaj.org). In addition, the journal makes every paper published immediately available in PubMed Central (PMC), the US National Institutes of Health (NIH) free digital archive of biomedical and life sciences journal literature.

Support Haematologica and Open Access Publishing by becoming a member of the European Hematology Association (EHA) and enjoying the benefits of this membership, which includes participation in the online CME program.
ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases- a report from the ALCL99 study

Running title: Pediatric ALK-positive cutaneous anaplastic large cell lymphoma

Ilske Oschlies1, Jasmin Lisfeld2, Laurence Lamant3, Atsuko Nakazawa4, Emanuele S.G. d'Amore5, Ulrika Hansson6, Konnie Hebeda7, Ingrid Simonitsch-Klupp8, Jadwiga Maldyk9, Leonhard Müllauer8, Marianne Tinguely10, Markus Stücker11, Marie-Cécile Ledeley12, Reiner Siebert13, Alfred Reiter2, Laurence Brugières14, Wolfram Klapper1, and Wilhelm Woessmann2

1 Department of Pathology, Hematopathology Section and Lymph Node Registry, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; 2NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen, Germany; 3Laboratoire Anatomie Pathologique, Centre Hospitalier Universitaire PurpanToulouse, France; 4Department of Pathology, National Center for Child Health and Development,Tokyo, Japan; 5UO di Anatomia Patologica, Ospedale San Bortolo, Vicenza, Italy; 6Avdehingen foer patologi, Sahlgrenskan Universitetssjukhuset, Gothenburg, Sweden; 7 Radbound University Nijmegen Medical Centre, Department of Pathology, Nijmegen, The Netherlands; 8Institute of Pathology, Medical University Vienna, Vienna, Austria; 9Department of Pathology, Childrens Hospital, Warsaw, Poland; 10Department of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland; 11Department of Dermatology and Allergology, Ruhr University Bochum, St. Joseph; 12 Department of Biostatistics, Institut Gustave Roussy, Villejuif, France; 13Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany, University of Kiel, Kiel, Germany, and 14Department of Pediatric Oncology, Institut Gustave Roussy, Villejuif, France

Correspondence

Ilske Oschlies, Department of Pathology, Hematopathology Section and Lymph Node Registry, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Michaelisstr. 11, 24105 Kiel, Germany.

Phone: international +0049.431.5973425. Fax: international +0049.431.5974129.

E-mail: ioschlies@path.uni-kiel.de
Key words: Primary cutaneous CD30-positive T-cell lymphoproliferative disorder, child, primary cutaneous anaplastic large cell lymphoma
Abstract

Background

Anaplastic large cell lymphomas are peripheral T-cell lymphomas that are characterized by a proliferation of large anaplastic blasts expressing CD30. In children systemic anaplastic large cell lymphomas often present at advanced clinical stage and harbor translocations involving the anaplastic lymphoma kinase (ALK) gene leading to the expression of chimeric anaplastic lymphoma kinase (ALK)-fusion proteins. Primary cutaneous anaplastic large cell lymphoma is regarded as an ALK-negative variant confined to the skin and is part of the spectrum of primary cutaneous CD30-positive T-cell lymphoproliferative disorders.

Design and Methods

33/487 pediatric patients registered within the Anaplastic Large Cell Lymphoma-99 trial (1999 to 2006) presented with a skin limited CD30-positive lymphoproliferative disorder. In 23/33 patients material for international histopathological review was available and the cases were studied for histopathological, immunophenotypical and clinical features as well as for breaks within the ALK gene.

Results

5/23 cases and one additional case -identified after closure of the trial- expressed ALK-protein. Complete staging excluded any other organ involvement in all children. Expression of ALK proteins was demonstrated by immunohistochemistry in all cases and the presence of breaks of the ALK gene was genetically confirmed in five evaluable cases. The histopathological and clinical picture of these skin-restricted ALK-positive lymphomas was indistinguishable from that of cutaneous anaplastic large cell lymphoma. Five children presented with a single skin lesion that was completely resected in four and incompletely resected in one. Three of these patients received no further therapy, two additional local radiotherapy and one chemotherapy. All children remain in complete remission with a median follow-up of 7 years (1 to 8 years).

Conclusions

We present 6 pediatric cases of ALK-positive primary cutaneous anaplastic large cell lymphomas. After thorough exclusion of systemic involvement, therapy confined to local measures seems to be sufficient to induce cure.
Introduction

Anaplastic lymphoma kinase-positive (ALK-positive) anaplastic large cell lymphoma (ALCL) is characterized by a neoplastic proliferation of large pleomorphic ("anaplastic") CD30-positive T cells with typical translocations involving the ALK gene and subsequent expression of chimeric ALK protein (1). This lymphoma accounts for about 15% of childhood non-Hodgkin lymphomas, but is rare in adulthood (2) (3). ALK-positive ALCL is usually a systemic disease that frequently involves extranodal sites. In children 18-25% of systemic ALCLs develop skin manifestations during the course of the disease and this is a poor prognostic factor (4-9). Systemic ALK-negative ALCL is included in the updated WHO classification as a separate preliminary entity (1). ALK-negative ALCL accounts for less than 5% of pediatric systemic ALCLs (5;10). However, both ALK-positive and ALK-negative ALCLs are considered potentially disseminated diseases (1).

Primary cutaneous ALCL (cALCL) is regarded by the WHO as a different disease and belongs to the spectrum of primary cutaneous CD30-positive lymphoproliferations (CD30+LPD), a group that additionally includes lymphomatoid papulosis (LyP)(1). CD30+LPDs share with systemic ALCL the presence of neoplastic CD30-positive large T cells, but lack ALK translocations and protein expression. cALCLs remain confined to the skin, virtually never disseminate beyond local lymph nodes and show an excellent prognosis after surgical resection without systemic therapy. Most cases of cALCL present as solitary skin lesions, but multiple skin nodules are also found. In contrast to systemic ALCL, cALCL is only rarely found in children and young adults (11-13). Recently published recommendations for the diagnosis of CD30+LPD state that immunohistochemical detection of ALK expression should be considered highly suspicious of a cutaneous manifestation of underlying systemic ALCL (13). In contrast IRF4 translocations have been reported in cALCL and in ALK-negative ALCLs but not in ALK-positive ALCL (14;15). In the international multicenter trial ALCL99, children included with localized skin disease were not to receive systemic chemotherapy based on the assumption that their disease would be CD30+LPD. We describe a series of 6 pediatric ALCLs that clinically and histologically resembled cALCL but expressed ALK fusion proteins. These localized cutaneous ALK-positive ALCL followed the typical benign clinical course of a CD30+LPD.
Design and Methods

Identification of cases and histopathological review

In the ALCL 99 multicenter study 487 children and young adults with the diagnosis of ALCL were registered from 1999 to 2006, including 33 patients with a CD30-positive lymphoproliferative disorder limited to the skin. Patients with isolated skin lesions diagnosed by complete staging procedures were to be followed after resection by watchful waiting without further systemic therapy regardless of the Alk status. For 23 of those skin limited lymphomas material was available for an international histopathological review. One additional case reported here was identified after completion of registration in 2006. The histological review of the cases was performed by members of the international pediatric lymphoma pathology panel (IO, LL, AN, EdA, UH, KH, ISK, JM, LM, MT) using hematoxylin and eosin (H&E) stained slides as well as slides stained immunohistochemically in various laboratories (see below). The registered clinical data from the study center were reviewed and additional details were obtained by contacting the attending pediatric oncologist. The study was part of the scientific projects accompanying the ALCL99 study, for which informed consent was obtained. The study was carried out according to the local ethical guidelines and in accordance with the ethical guidelines of the studies in which the patients were treated.

Immunohistochemistry and fluorescence in situ hybridization

All immunohistochemical stainings were performed on whole tissue sections. The stainings were scored semiquantitatively as negative, weak (<30% positive tumor cells or all tumor cells weakly positive), positive (>30% positive tumor cells) or not interpretable. The minimal staining panel for each lymphoma included CD20, CD3, CD30, and ALK. Additional stainings for granzyme B, perforin, TIA1, EMA, CD2, CD5 were available for individual cases. Due to the retrospective nature of the study, the staining procedures and antibody sources for these markers varied between the participating countries but had been previously established within the group as part of the ALCL99 study(16). Fluorescence in situ hybridization (FISH) for chromosomal breaks in the ALK gene or at the IRF4/DUSP22 locus was performed as previously described(17;18).
Results

Identification of the 6 ALK-positive cases limited to the skin

Among the 23 cases with ALCL or CD30-positive lymphoproliferations confined to the skin registered into the ALCL99 study and available for international histopathological review, 5 patients with expression of ALK protein were identified. During the preparation of the manuscript another case of ALK-positive ALCL limited to the skin was identified by the NHL-BFM study center and included in this series.

Histological and immunohistochemical features

The main histological and immunohistochemical features of the 6 cases are summarized in table 1. In most cases a superficial and deep cutaneous infiltration extending into the subcutis was observed (3 of 4 cases in which all skin layers were included in the biopsy specimen). The lesions were rather poorly demarcated. In one case an isolated subcutaneous nodule without dermal involvement was seen. In 5 cases the epidermis was included in the specimen and was either normal in appearance (n=2), showed hyperplastic changes (n=2) or hyperplastic changes with additional focal superficial erosion (n=1). A large number of CD30-positive neoplastic blasts forming cohesive sheets were detectable in 5 of 6 cases. However, one case displayed only scattered blasts. In 3 of 6 lesions the growth pattern of the blasts was perivascular. Reactive inflammatory bystander cells were composed of a moderate number of neutrophils (1 of 6) or lymphohistiocytic cells (2 of 6). No inflammatory bystander cells were detectable in 3 of 6 lymphomas. Figure 1 shows one representative example of an ALK-positive ALCL confined to the skin.

ALK expression was immunohistochemically detectable in all cases with nuclear and cytoplasmic staining in 5 of 6 cases, indicating an underlying NPM-ALK fusion due to a t(2;5) translocation. In one lymphoma diffuse cytoplasmic ALK staining without nuclear positivity was noted. Interestingly, in 4 of 6 lymphomas a small cell component was detectable, as indicated by predominately nuclear staining of small lymphoma cells (figure 2). All five cases tested for epithelial membrane antigen (EMA) were strongly positive. CD3 was negative (4 of 6) or weakly expressed (2 of 6). All lymphomas expressed at least one cytotoxic protein, such as granzyme B, TIA1 or perforin with the characteristic granular staining pattern (data not shown).
Fluorescence in situ hybridization

Material for fluorescence in situ hybridization was available for 4 lymphomas. Breaks in the ALK gene were detectable in all 4 analyzed cases (figure 1). In the additional patient with multilocular skin disease NPM-ALK-transcripts were detected in the bone marrow and blood by polymerase chain reaction (data not shown) so that the ALK-translocation was confirmed molecularely in five of six patients. In contrast breaks affecting the IRF4/DUSP22 locus in 6p25 recurrently involved in cALCL were not detectable in the three cases studied.

Clinical characteristics, therapy and outcome

Table 2 summarizes the clinical characteristics of the patients reported in this series. The median age was 10.8 years (range 7.5-13.8). 3 patients were male and 3 female. None of the children had a clinically documented history of lymphomatoid papulosis (LyP) or mycosis fungoides. The lymphomas presented clinically as papulo-nodular skin lesions (5 of 6) and/or subcutaneous nodules (3 of 6). One patient displayed multiple skin lesions (case 4), which were described as multiple “pink nodules” on the trunk, arms and neck. The isolated lesions in the other 5 patients involved the thigh (n=3), neck (n=1) or knee (n=1). Figure 1 shows the clinical presentation of one case with a solitary lesion on the thigh (case 6). None of the children suffered from B symptoms. All patients underwent a complete initial staging procedure to exclude systemic disease according to the ALCL99 protocol including imaging of the abdomen and thorax, full blood cell count and bone marrow cytology. Lumbar puncture was performed in 5 of the 6 patients. In one patient minimal disseminated disease (MDD) was detectable, measured by polymerase chain reaction for NPM-ALK transcripts(19) in the bone marrow and blood (case 4, table 2, data not shown). The single skin lesion was surgically completely resected in four of the five patients. One patient received additional local radiotherapy after complete excision and in one case an incomplete resection of the skin lesion was followed by local radiotherapy. The patient with multiple skin nodules and MDD in the bone marrow and peripheral blood (case 4, table 1) received six courses of chemotherapy according to the protocol ALCL99 in the high risk arm (20) . None of the other patients received chemotherapy. All patients reached a complete remission and remained disease-free with a median follow up of 7 years (range 1-8y).
Discussion

We report here six cases of ALK-positive ALCL limited to the skin. These lymphomas mimicked primary cutaneous CD30+LPD in their histopathology, clinical presentation and response to therapy.

CD30+LPD comprise a spectrum of diseases confined to the skin, including LyP and cALCL, which show overlapping histological features. Both diseases are characterized by a neoplastic infiltrate of anaplastic CD30 positive T cells with a variable admixture of reactive inflammatory cells. Single nodular skin lesion or less frequently multiple nodules that do not undergo spontaneous regression are the typical presentation of cALCL (1;13). Distinguishing a primary cutaneous CD30+LPD like LyP and cALCL from secondary involvement of the skin by systemic ALCL is clinically relevant. Treatment of systemic ALCL consists of risk adapted polychemotherapy. Secondary skin involvement is regarded as a clinical risk factor, often utilized to stratify patients to a more aggressive treatment regimen (21;22) In contrast, primary cutaneous CD30+LPD, which is limited to the skin and rarely disseminates, usually either resolves spontaneously or is treated locally, e.g. by surgical excision(13).

All of our cases fulfilled the clinical and histological criteria of a primary cutaneous anaplastic large cell lymphoma with predominantly solitary skin lesions, no history of LyP, no extracutaneous dissemination and response to local therapy(13) but all cases were ALK-positive. Given the higher incidence of cALCL in adults most published series analyzing ALK expression have included predominately adult patients (23). Only single case reports and small series of pediatric cALCL exist, in which ALK staining was inconsistently performed (24-28). We assume that our series is not population-based as cutaneous CD30+LPD are diagnosed and treated either by dermatologists or pediatric oncologists. Nevertheless, our data suggest that ALK-positive cALCL might be more frequent than anticipated within the pediatric population and recommend that all CD30+LPD of the skin in children should be carefully analyzed for ALK expression.

Lamant et al. (29) recently reported five children with systemic ALK-positive ALCL that presented as skin lesions at the site of preceding insect bites, often with involvement of the draining local lymphnode. Thus, the skin might not only present a preferred microenvironment for ALK-positive ALCL but might even be the primary site of lymphomagenesis. At the moment no reliable histopathological features are known to distinguish secondary skin involvement by a systemic ALCL from primary cutaneous CD30+LPD. EMA has been reported to be positive in most systemic ALK-positive and ALK-negative ALCLs (30) but negative in cALCL (13;31). ALK protein expression as well as the
underlying ALK-gene translocation are considered indicative of systemic ALK-positive ALCL and are seen in nearly all pediatric systemic ALCL cases (10;20). In contrast, cALCL is considered ALK-negative both at the molecular and the protein level (32-35). Our cases were ALK-and EMA-positive on the one hand but localized and limited to the skin on the other hand side and thus presented as and therefore could be named as "primary cutaneous ALK-positive ALCL". One can discuss, whether the child with multiple skin lesions and positive MDD should have been classified as child with systemic type ALCL. Nevertheless for the moment staging is determined by the clinical imaging as well as the evaluation of bone marrow cytology and all these investigations were negative in this child indicating isolated skin disease. In practical terms the child was treated despite the isoated skin involvement with systemic chemotherapy and we would support this treatment decision especially as positive MDD has been shown to be an adverse prognostic factor in systemic ALCL (19).To the best of our knowledge skin confined variants of ALK-positive ALCL have previously been published in 5 cases only. Table 3 shows a summary of the literature (33;36-40) and the cases presented here. However, the published cases differ from our series in two main points. First, all previously published cases were adult patients (table 2). Second, two of five previously published cases developed systemic disease years after the initial primary skin disease, a feature that was absent in our cohort (table 2). Just recently at the joint workshop of the Society for Hematopathology and the European Association for Hematopathology (SH/EAHP) on cutaneous lymphomas held in Los Angeles in October 2011(41) five new cases of ALK-positive ALCLs confined to the skin were presented as case reports. Four of these occurred in adults with variable clinical scenarios, ALK-staining-patterns and histomorphological features, and only one ALK-positive ALCL confined to the skin was described in a child with a very unusual mycosis fungoides like clinical and histological presentation. Thus more attention to ALK-staining in cutaneous T-cell lymphoproliferations seems justified.

Interesting histological features of the lymphomas reported here were the presence of a small cell component in four of the six cases and a perivascular growth pattern in three. The presence of a small cell component and a perivascular growth pattern have recently been reported to be associated with a poorer outcome in systemic ALK-positive ALCL (16). However, there was no relapse among the five patients with exclusive local therapy reported in our series. This emphasizes again that ALK-positive ALCL limited to the skin may represent a specific subgroup of ALK-positive ALCL for which prognostic parameters established in systemic ALK-positive ALCL do not apply.
In summary, our cases illustrate that ALK-positive ALCL can present as a localized skin-limited disease. Localized treatment with careful follow-up seems justified after thorough exclusion of systemic disease in this rare variant. Understanding the biology of ALK-positive ALCLs that are confined to the skin might influence therapy strategies for ALK-positive ALCL also in other locations.
Authorship and Disclosures

IO, WK, AR, LB and WW contributed to the conception and design of the study, acquisition, analysis and interpretation of the data, drafting the article and revising it critically for important intellectual content. RS interpreted FISH data and revised the draft of the article. MCL, JL, AR and MS provided clinical data and revised the draft of the article. LL, AN, EdA, UH, KH, ISK, JM, LM, and MT performed the histopathological review of the cases and revised the draft of the article. All authors approved the last version of the manuscript.

Funding

This work was supported by the José-Carreras-Foundation (DJCLS R08/09). RS and WK are supported by the Kinderkrebs Initiative Buchholz, Holm-Seppensen, Germany. The ALCL99 study was supported by the Forschungshilfe Peiper and the Association Cent pour Sang la Vie, France. None of the authors reported any other potential conflicts of interest.

Acknowledgments

The authors are indebted to all the children and parents who participated in this study; to Nathalie Bouvet, Institut Gustave-Roussy, Villejuif, France, for database management and Oliviera Batic, Dmitry Abramov and Reina Zühlke-Jenisch for their technical assistance.
References

Tables

Table 1. Histopathological and immunohistochemical features of 6 pediatric cases of ALK-positive primary cutaneous anaplastic large cell lymphoma.

Table 2. Clinical features of 6 pediatric cases of ALK-positive primary cutaneous anaplastic large cell lymphoma.

Table 3. Literature review of reported ALK-positive cutaneous anaplastic large cell lymphomas and findings in this series.

Legends

Figure 1. Clinical and histological features of one representative example of ALK-positive ALCL confined to the skin (case 6, see table 1 and 2). This is a nodular lesion on the thigh, approximately 2 cm in largest diameter (case 6). The black ink marks the area that had initially been planned for resection; it was later decided to resect the lesion completely (A). At low magnification deep extension of the lesion with a dense dermal infiltration as well as reactive epidermal hyperplasia is observed (B, H&E). Cytologically, histiocytes, a few lymphocytes and intermingled atypical large cells are seen (C, H&E). Large cells in clusters with a perivascular pattern are observed. There is no epidermotropism (D, CD30). Large cells show nuclear and cytoplasmic ALK staining; intermingled some smaller cells with nuclear ALK are found (E, ALK). Fluorescence in situ hybridization using the LSI ALK BAP probe (Abbott) indicates a chromosomal breakpoint in the ALK gene (arrows)(F).

Figure 2. An example of ALK-positive ALCL (case 1, see table 1) with epidermotropism of lymphoma cells and a subepithelial small cell tumor component, A and B, H&E, C: ALK1).
Table 1: Histopathological and immunohistochemical features of 6 pediatric cases of ALK-positive primary cutaneous anaplastic large cell lymphoma. Scoring of histopathological features: + = present, - = absent, ni = not interpretable. Scoring of immunohistochemistry: - = negative staining, + = weak staining or <30% of cells moderate to strong staining, ++ = moderate to strong staining in >30% cells. n+cyt = nuclear and cytoplasmic staining, cyt = cytoplasmic staining only. *In all evaluable cases dermal involvement was superficial and deep.
<table>
<thead>
<tr>
<th>Case no.</th>
<th>Age (years)</th>
<th>Maculopapular lesions</th>
<th>Subcutaneous nodules</th>
<th>Multiple skin lesions</th>
<th>Location</th>
<th>B symptoms</th>
<th>Staging*</th>
<th>Complete resection</th>
<th>Chemo/radiation</th>
<th>Relapse</th>
<th>Follow-up (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.1</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>ventral thigh, approx. 2 cm in diameter</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>7.5</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>neck, approx. 3 cm in diameter</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>thigh, small red lesion</td>
<td>n.e.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>anterior wall of thorax, neck, arms, back: pink nodules</td>
<td>-</td>
<td>+ (MDD+BM and pB)(^1)</td>
<td>-</td>
<td>chemo(^2)</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>11.9</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>right knee</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>radiation</td>
<td>-</td>
<td>5.2</td>
</tr>
<tr>
<td>6</td>
<td>13.8</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>left thigh</td>
<td>-</td>
<td>+ (no CSF)</td>
<td>+</td>
<td>radiation</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: clinical features of 6 pediatric cases of ALK-positive primary cutaneous anaplastic large cell lymphoma. \(^1\)MDD: minimal disseminated disease assessed by RT-PCR for t(2;5) (NPM;ALK) in the bone marrow (BM) and peripheral blood (pB) was positive. \(^2\)chemotherapy according to ALCL99 = Prephase, 3xA, 3xB. Complete remission after A1. CSF = cerebrospinal fluid, n.e.= not evaluated. Staging*: += complete clinical staging was performed and remained negative.
<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Localization</th>
<th>ALK expression pattern</th>
<th>Therapy of first lesion</th>
<th>Local recurrence</th>
<th>Distant cutaneous recurrence</th>
<th>Number of recurrences reported</th>
<th>Treatment of recurrent lesions</th>
<th>Systemic dissemination</th>
<th>Outcome</th>
<th>Observation period in months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan et al. J Am Acad Dermatol. 2011</td>
<td>33</td>
<td>m</td>
<td>multiple: trunc, head, leg</td>
<td>nuclear and cytoplasmic</td>
<td>6 cycles of chemo-therapy¹</td>
<td>no</td>
<td>yes</td>
<td>2</td>
<td>excision, chemotherapy</td>
<td>systemic relapse 2 years after diagnosis</td>
<td>CCR</td>
</tr>
<tr>
<td>Kadin et al. Am J Surg Pathol. 2008</td>
<td>57</td>
<td>m</td>
<td>single lesion leg</td>
<td>cytoplasmic ²</td>
<td>surgical excision</td>
<td>no</td>
<td>yes</td>
<td>6</td>
<td>surgical excision and radiotherapy</td>
<td>no</td>
<td>CCR</td>
</tr>
<tr>
<td>Beylot-Barry et al. Blood 1998</td>
<td>1/26 reported primary cutaneous CD30+ lymphomas³</td>
<td>nuclear and cytoplasmic</td>
<td>not known</td>
<td>not known</td>
<td>not known</td>
<td>not known</td>
<td>not known</td>
<td>no</td>
<td>not known</td>
<td>no</td>
<td>not known</td>
</tr>
<tr>
<td>Su et al. J Cutan Pathol. 1997</td>
<td>57</td>
<td>f</td>
<td>multiple lesions: trunk</td>
<td>cytoplasmic</td>
<td>6 cycles CHOP⁴</td>
<td>no</td>
<td>no</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>CCR</td>
</tr>
<tr>
<td>this series</td>
<td>n=6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>all CCR</td>
</tr>
</tbody>
</table>

Table 3: literature review of reported ALK-positive cutaneous anaplastic large cell lymphomas and findings in this series. ¹ Cyclophosphamide, Vincristine, Prednisolone, Hydroxydoxorubicine ² molecular findings: phosphorylated cytoplasmic ALK protein; FISH: no ALK break. ³ clinical details were not described. ⁴ Cyclophosphamide, Adriamycin, Vincristine, Prednisone. CCR: complete clinical remission, DOD: death of disease.