Elevated lipoprotein (A), small APO (A), and the risk of arterial ischemic stroke in U.S. children

Haematologica 2013 [Epub ahead of print]

Publisher's Disclaimer.

E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.

Haematologica (pISSN: 0390-6078, eISSN: 1592-8721, NLM ID: 0417435, www.haematologica.org) publishes peer-reviewed papers across all areas of experimental and clinical hematology. The journal is owned by the Ferrata Storti Foundation, a non-profit organization, and serves the scientific community with strict adherence to the principles of open access publishing (www.doaj.org). In addition, the journal makes every paper published immediately available in PubMed Central (PMC), the US National Institutes of Health (NIH) free digital archive of biomedical and life sciences journal literature.
ELEVATED LIPOPROTEIN(a), SMALL APO(a), AND THE RISK OF ARTERIAL ISCHEMIC STROKE IN U.S. CHILDREN

RUNNING TITLE: Lp(a), Apo(a), and risk of childhood stroke

The Pediatric Stroke Program and Department of Pediatrics, Sections of Hematology/Oncology/BMT (M.J.M-J) and Child Neurology (T.B., J.A.W), Department of Anesthesia (J.G.), Graduate Medical Education Program (J.H.), Colorado Clinical Translational Science Institute (R.K-C.), and the Mountain States Regional Hemophilia and Thrombosis Center (N.A.G., T.J.B., J.A-W., L.J., M.J.M.-J.), University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA; Northwest Lipid Metabolism and Diabetes Research Laboratories (S.M.M.), University of Washington, Seattle, WA, USA; Departments of Pediatrics and Medicine, Divisions of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA (N.A.G); and All Children’s Research Institute, All Children’s Hospital–Johns Hopkins Medicine, St. Petersburg, FL, USA (N.A.G.)

CORRESPONDENCE
Neil A. Goldenberg, MD, PhD 501 6th Avenue South St. Petersburg, FL 33701 USA.
Phone: international +727.7676900. E-mail: neil.goldenberg@allkids.org

Funding
National Institutes of Health, National Heart Lung and Blood Institute, 1K23HL084055 (N.A.G.) and 1K23HL096895 (T.J.B.) Centers for Disease Control and Prevention UR6/CCU820552 (M.J.M-J.)

KEY WORDS: children, stroke, lipoprotein(a), apo(a), pediatrics.
ABSTRACT

BACKGROUND. Lipoprotein(a) [Lp(a)] is a risk factor for adult cardiovascular events, in which the apolipoprotein(a) [apo(a)] component is thought to promote atherogenesis and impair fibrinolysis.

OBJECTIVES. We investigated whether elevated plasma Lp(a) concentration and small predominant apo(a) isoform size (number of kringle-4 domains) are risk factors for childhood arterial ischemic stroke and correlate with plasma fibrinolytic function. METHODS: Childhood arterial ischemic stroke cases (29 days-<21 years at onset; n=43) and healthy controls (n=127) were recruited for plasma sampling and laboratory determinations. Cases were followed for recurrence via a prospective cohort study.

RESULTS. Median Lp(a) concentration did not differ between groups (cases: median 18.0 nmol/L [7.5 mg/dL] and observed range 0.9-259 nmol/L [0.38-108.0 mg/dL], controls: 20.4 nmol/L [8.5 mg/dL] and 0.2-282 nmol/L [0.08-117.5 mg/dL]; P=0.62). While odds of incident stroke were not significantly increased, risks of recurrent arterial ischemic stroke were each more than ten-times increased for Lp(a) >90th percentile of race-specific reference values and apo(a) <10th percentiles (odds ratio=14.0 [95% confidence interval: 1.0-184], P=0.05) and odds ratio=12.8 [1.61-101], P=0.02). Statistically significant but weak correlations were observed for euglobulin lysis time with both Lp(a) level (r=0.18, P=0.03) and apo(a) size (r= -0.26, P=0.002).

CONCLUSIONS. Elevated Lp(a) and small apo(a) potently increase the risk of recurrent AIS in children, the mechanism for which is only partially attributable to impaired fibrinolysis. Collaborative studies are warranted to further investigate these findings, and more broadly to establish key risk factors for incident and recurrent arterial ischemic stroke in children.
INTRODUCTION

Lipoprotein (a) [Lp(a)] is a plasma lipoprotein comprised of phospholipid, cholesterol, apo B-100, and apo(a). The apo(a) component of Lp(a) has 80% homology with plasminogen by virtue of shared repetitive kringle-IV domains [1]. Lp(a) is believed to be prothrombotic via two principal mechanisms: (1) atherogenesis, via vascular endothelial inflammatory response to oxidized Lp(a) and plaque deposition by foam cells [2,3]; and (2) hypofibrinolysis, via inhibition of plasminogen activation [4]. The apo(a) component is thought to play a role in the pathogenesis of Lp(a); recently, a meta-analysis of 40 published studies evaluating the relationship between predominant apo(a) isoform size (number of kringle 4 domains) and coronary heart disease or ischemic stroke in adults revealed that patients having a predominant apo(a) isoform of fewer than 22 kringle 4 domains are at approximately two-fold increased risk for these conditions [5].

Arterial ischemic stroke (AIS) is a rare disease outside of the peri-natal/neonatal period, with an incidence of approximately 5 per 100,000 individuals per year in childhood [6-8]. At the same time, it is a serious disorder with deficits evident in 70% of children, both acutely [9] and in long-term follow-up [10-12]. In addition, recurrence is common, with a cumulative probability of recurrent stroke of 6-15% at approximately one year [6,13]. Numerous causal and contributing factors have been identified in childhood-onset AIS, including thrombophilia (i.e., hypercoagulability), acute infection, congenital cardiac disease or cardiac catheterization, cerebral/cervical arterial dissection, cerebral angiitis, and other/idiopathic cerebral arteriopathies [14].

Elevated Lp(a) levels have also been implicated as a putative risk factor for childhood-onset AIS. Prospective studies of the risk of ischemic stroke associated with elevated Lp(a) in
adults have had conflicting findings, suggesting overall a very mild increase in ischemic stroke risk when Lpa(a) levels were >99th percentile, particularly after adjustment for other common stroke risk factors [15]. In children, a seminal multi-center case-control study in Germany [16] demonstrated significantly increased odds of incident idiopathic AIS (i.e., absence of known clinical risk factors) in association with Lp(a)>30mg/dL (odds ratio [OR]=7.2, 95% confident interval [CI]=3.8-13.8). More recently, in a U.S. study [17], the prevalence of elevated Lp(a) among 59 children with porencephaly or history of perinatal or childhood onset-AIS was significantly increased when compared to historical controls who had consisted of healthy German children (20% vs. 5.4%); however, concomitant U.S.-based controls were lacking. Interestingly, in a French study of mother-infant diads of neonatal AIS, elevated maternal Lp(a) was not only implicated in perinatal AIS but also correlated with low birth weight in these infants, leading to a hypothesis that elevated Lp(a) may mediate placental insufficiency [18]. With regard to recurrent AIS in childhood, a prospective multicenter cohort study in Germany [13] demonstrated Lp(a)>30mg/dL to be an independent risk factor for recurrent AIS (OR: 2.8, 95% CI: 1.1-7.5).

In consideration of the lack of well-controlled studies of Lp(a) in childhood-onset AIS outside of Germany, and given also that apo(a) size has been received little attention in pediatric AIS, we sought to determine the odds of incident and recurrent childhood-onset AIS associated with elevated plasma Lp(a) and small apo(a) isoform size in a U.S. pediatric population. Furthermore, in order to enhance mechanistic understanding of pathophysiology, we investigated the relationship of Lp(a) levels and apo(a) isoform size with overall fibrinolytic capacity in plasma, using two global assays of fibrinolysis.
DESIGN AND METHODS

Subjects. Children with a history of radiologically-confirmed AIS with symptomatic onset at age 29 days to <21 years (case group, n=43) and healthy children (unmatched, contemporaneous control group, n=127) were consecutively recruited in an IRB-approved case-control study at the Children’s Hospital Colorado and the Mountain States Regional Hemophilia and Thrombosis Center at the University of Colorado (Aurora, CO, USA) from 2004 to 2010, with blood sampling for laboratory determinations as described below. Children with AIS were followed in the multidisciplinary Stroke Clinic at Children’s Hospital Colorado and additionally enrolled from 2006 to 2011 in an IRB-approved local prospective cohort study designed to capture and analyze clinically-derived, systematically-assessed data on AIS risk factors, treatments, and long-term outcomes. For patients diagnosed with acute AIS prior to February 28, 2006 (n=21), data were retrospectively collected prior to this date and prospectively ascertained from this date forward. Controls were enrolled from a well-child ambulatory setting as well as a pre-operative environment for outpatient elective surgery, and were systematically screened for exclusions of acute illness, concomitant medication, and personal or family history of early-onset (prior to age 55 years) ischemic stroke, myocardial infarction, or venous thromboembolism.

Diagnostic criteria for acute pediatric AIS consisted of sudden onset of focal neurological deficit with objective confirmation of a corresponding arterial-distribution ischemia/infarct by computed tomography or magnetic resonance imaging of the brain. Etiologic findings derived via history, exam, and diagnostic investigations (vascular imaging of the head and neck, echocardiography, and thrombophilia testing) were classified according to current consensus criteria for childhood-onset AIS [19]. Diagnostic criteria for recurrent AIS were identical to
those for incident AIS (above); however, events that occurred within 7 days of initial AIS were not considered as recurrent AIS.

Plasma collection, processing, and storage methods. Blood samples were obtained at rest by peripheral venipuncture into EDTA [for Lp(a) and apo(a) isoform determinations] or sodium citrate (for fibrinolysis assays). Whole blood was processed to plasma by single centrifugation at 4°C and 2500 x g for 15 minutes [for Lp(a) and apo(a)] and by double-centrifugation at the same settings (for platelet poor plasma, used in fibrinolysis assays). Plasma was stored as 200-500 µL aliquots in polystyrene long-term freezer storage tubes at -70°C.

Lp(a), apo(a) isoform, and global fibrinolytic laboratory assay methods. Lp(a) concentration was measured using an ELISA method developed in Dr. Marcovina’s laboratory, based on a detecting monoclonal antibody recognizing an epitope present in kringle 4 type 9 domain of apo(a). The assay has been extensively evaluated for its ability to accurately measure Lp(a) levels without being influenced by apo(a) size heterogeneity [20]. Lp(a) values are traceable to the World Health Organization/International Federation of Clinical Chemistry and Laboratory Medicine Reference Material SRM-2B and are expressed in nmol/L. Apo(a) isoforms were determined by a high sensitive agarose gel electrophoresis method [21] and the isoforms are designated by their respective number of kringle 4 domains. Lp(a) results are expressed as corresponding race-specific percentiles, based upon reference values established in the CARDIA study cohort [21]. Apo(a) isoforms are reported as corresponding race-specific percentiles, based upon the isoform distribution obtained in CARDIA [21].

Global fibrinolysis assays included the Clot Formation and Lysis (CloFAL) assay and the automated Euglobulin Clot Lysis Assay (ECLA). The CloFAL assay monitored kinetic light absorbance measurements in plasma following the addition of a reagent comprised of trace
lipidated tissue factor for coagulation activation and tissue plasminogen activator for acceleration of clot lysis, resulting in a clot formation and lysis waveform, as previously described [22-24]. A recently-updated fibrinolytic index (FI2) was employed [25]. ECLA was performed by automated spectrophotometric technique as previously described, with results expressed as the euglobulin lysis time (ELT) [26].

Statistical methods. Statistical methods in the descriptive analyses involved calculation of median values with observed ranges. These distributions were compared between groups using the Mann-Whitney U test. OR were calculated for the association between elevated values and stroke risk, using both the 75th and 90th percentiles of previously-established normal values [21] as cutoffs for elevated Lp(a), and the 25th and 10th percentiles as cutoffs for apo(a) isoform size. Ninety-five percent CI were determined using the Wald method. Correlation testing was performed using the Spearman method. Alpha was set at 0.05 for inferential statistics. All analyses were performed using SAS version 9.1 statistical software (SAS Institute, Cary, NC).
RESULTS

Analyses of Risks of Incident AIS (Case-Control) and Recurrent AIS (Cohort)

The study population consisted of 43 childhood-onset AIS cases and 127 unmatched, consecutive, contemporaneous, healthy pediatric controls. Stroke subtypes, treatments, and outcomes in the case group are described for the childhood-onset AIS case group in Table 1. Risk of recurrent AIS was 16%, with a median time to recurrence of four months after incident AIS. Antithrombotic treatment histories for incident AIS among patients who developed recurrent AIS were consistent with those of the overall cohort (see Table 1), and consisted of the following: sub-acute, ASA 57% (4/7) and anticoagulation 43% (3/7); extended, ASA 71% (5/7), anticoagulation 14% (1/7), and none 14% (1/7).

Demographic data and Lp(a) results are summarized in Table 2, by study group. Study groups were similar with respect to demographic characteristics of age at enrollment and race; males were more frequent in the case group (60% vs. 42%; \(P=0.04\)), consistent with prior publications of male predilection in pediatric AIS. Median Lp(a) concentration did not significantly differ between cases and controls (median 18.0 nmol/L [7.5 mg/dL] vs. 20.4 nmol/L [8.5 mg/dL]; \(P=0.62\)). Similarly, with regard to predominant apo(a) isoform size, there was no significant difference in median number of kringle 4 domains between cases and controls (24 domains [16-33 domains] vs. 25 domains [12-37 domains]; \(P=0.55\)).

Prevalence of elevated Lp(a) (>75th and >90th race-specific percentiles of established reference values) was 16.3% and 7.0% (respectively) among cases, and 15% and 5.5% among controls. Prevalence of small apo(a) isoform size (<25th and <10th race-specific percentiles) was 27.9% and 18.6% among cases, and 25.2% and 14.2% among controls. Odds of incident stroke for elevated Lp(a) levels (>75th and >90th percentiles of previously-established normative
values) were 1.50 (95% confidence interval: 0.62-3.63; \(P=0.36\)) and 1.29 (0.32-5.21; \(P=0.49\)), and for small apo(a) isoform size (<25th and <10th percentiles) were 1.59 (0.76-3.35; \(P=0.22\)) and 0.80 (0.28-2.29; \(P=0.67\)). Odds of recurrent AIS for Lp(a) >75th and >90th percentiles were 3.75 (0.66-21.3; \(P=0.15\)) and 14.0 (1.0-184; \(P=0.05\)), and for apo(a) isoform <25th and <10th percentiles were 1.50 (0.29-7.81; \(P=0.68\)) and 12.8 (1.61-101; \(P=0.02\)). Because race-specific percentiles were calculated and reported for both Lp(a) and apo(a), adjustment of the analyses (odds ratios) for race was not pertinent. Additionally, since analyses of incident and recurrent stroke risk employed Lp(a) percentiles referenced to the pediatric normative values established in the CARDIA study [21], and because we found only a weak correlation between age and Lp(a) concentration \((r=0.23, \ P=0.04\)) and no correlation between age and apo(a) isoform size \((r=-0.04, \ P=0.74\)), age-adjustment of the odds ratios was not undertaken. Lastly, given that gender was not a significant risk factor for incident or recurrent AIS in univariate logistic regression, odds ratios were not adjusted for gender.

When controls were restricted to those having negative 2nd degree family histories for early-onset AIS, myocardial infarction, and venous thromboembolism, Lp(a) and apo(a) associated stroke risks were not significantly changed (data not shown). When cases were restricted to idiopathic AIS using CASCADE criteria, odds of incident stroke for Lp(a) >75th and >90th percentiles were 2.53 (0.71-9.04; \(P=0.22\)) and 3.43 (95% CI: 0.63-18.7; \(P=0.17\)), and for apo(a) isoform <25th and <10th percentiles were 3.46 (1.08-11.1; \(P=0.047\)) and 1.82 (0.46-7.24; \(P=0.25\)). Odds for recurrent stroke among patients with incident cryptogenic AIS were indeterminate due to low frequency.
Investigations of Mechanistic Hypothesis re: Fibrinolysis

To explore mechanisms by which Lp(a) and apo(a) modulate recurrent AIS risk in children, the relationship between these biomarkers and plasma fibrinolytic function was investigated, using two distinct methodologies for overall fibrinolytic capacity: the CloFAL assay and ECLA. These analyses revealed no statistically significant correlation between either Lp(a) levels or apo(a) isoform size and FI₂ in the CloFAL assay ($r = -0.15 \ [P=0.11]$ and $r = -0.06 \ [P=0.52]$). However, there were statistically significant (albeit weak) correlations of Lp(a) levels and predominant apo(a) isoform size (# of kringle 4 repeats) with ELT by ECLA ($r=0.18 \ [P=0.03]$ and $r= -0.26 \ [P=0.002]$, respectively). In addition, as reflected in the scatterplots of Figure 1, ELT was significantly longer (suggesting relative hypofibrinolysis) among children with predominant apo(a) isoforms less than the 25th percentile of normative values, when compared to those greater than or equal to the 25th percentile (median, 279 min [observed range, 120-504 min] vs. 187 min [90-482 min], respectively; $P=0.006$).
DISCUSSION

The present work provides U.S. data in support of the importance of elevated Lp(a) as a mild prognostic factor for recurrent AIS in childhood, as previously demonstrated in a German multicenter cohort [13]. Yet, our study does not substantiate prior German case-control findings of an increase in risk of incident childhood-onset AIS in association with elevated Lp(a) [16], nor those of a meta-analysis by Kenet and colleagues (comprised of these studies and three others from Germany) [27], which identified elevated Lp(a) as a risk factor for incident pediatric (i.e., childhood-onset and/or perinatal/neonatal) AIS. In addition, small apo(a) size was not a significant risk factor for incident childhood-onset AIS in the current U.S. study, despite recent meta-analysis findings from adult studies that small apo(a) size confers a two-fold increase in the risks of coronary heart disease and ischemic stroke [5]. However, small apo(a) was shown in the current work to be a significant risk factor for recurrent childhood-onset AIS, conferring a nearly 13-fold increase in odds. Lastly, in investigations of overall fibrinolytic capacity in plasma, modest correlations were identified between ELT by ECLA and both Lp(a) levels and apo(a) isoform size, and ELT was increased (suggesting relative hyofibrinolysis) among children with apo(a) <25th percentile.

This work is important in its unique demonstration of the odds of incident and recurrent childhood-onset AIS associated with elevated plasma Lp(a) in a U.S. pediatric population, and its novel investigation of same with regard to apo(a) isoform size. If substantiated in larger collaborative cohorts, these findings would suggest that Lp(a) measurement is more important for secondary prevention in childhood-onset AIS than for primary prevention, and that determination of apo(a) size does have key implications for clinical management in children who have a history of AIS. The present study also provides unique data on the relationship of Lp(a)
levels and apo(a) isoform size with overall fibrinolytic capacity in plasma, as measured by two global assays of fibrinolysis, CloFAL and ECLA. These data suggest a mechanistic basis for pathogenesis of small apo(a) isoforms—i.e., impairment of fibrinolysis. At the same, the fact that correlations of apo(a) with ELT were statistically significant but not strong may be explained by recent observations that overall plasma fibrinolytic capacity, when measured by the CloFAL assay, is strongly driven by functional fibrinogen levels [25].

A few factors may explain the difference between the present findings for Lp(a) in childhood AIS and prior work by Nowak-Göttl and colleagues [16]. Foremost among these is the fact that childhood-onset AIS cases in the German case-control study were idiopathic in nature, whereas those in this study included all potential CASCADE subtypes; as such, our secondary analysis restricting the cases group to idiopathic AIS is more comparable to that of Nowak-Göttl’s study, but was limited by a small sample size. Secondly, given that Lp(a) is highly genetically determined, and that both studies utilized non-acute Lp(a) testing to mitigate acute phase response, it is possible that genetic heterogeneity between the German and U.S.-based study populations explains the different findings. It should be noted that the prevalence of elevated Lp(a) (when defined as $>75^{th}$ percentile of race-specific norms in the current study, and as >30mg/dL in the study by Nowak-Göttl et al.) differed between control groups in the two studies. Lastly, the Lp(a) laboratory methodologies differed between the two studies; the ELISA method was selected for the present study because it has been validated to accurately measure Lp(a) concentration, independent of apo(a) size polymorphism [15].

Strengths of the present study include: uniform application of rigorous eligibility criteria to meet childhood-onset AIS case and healthy control definitions; use of gold-standard Lp(a) assay methodology in a national reference laboratory for same; analysis of apo(a) size; and
evaluation of overall plasma fibrinolytic capacities in two global assays. At the same time, several potential limitations are worthy of note. First, we did not employ time-to-event analyses in evaluating the associations of Lp(a) and apo(a) with recurrent AIS. However, given the left-skew in the time of re-occurrence (i.e. median of 0.4 mo with range of 0.25 mo to 34 mo), re-occurrences were generally early in the follow-up course, such that the presence/absence of recurrent stroke is more meaningful than the time to re-occurrence per se; hence, the results of a Cox regression would be very unlikely to differ from those reported here using logistic regression. Furthermore, because our a priori choice of logistic regression methodology was based on the accurate assumption that most re-occurrences would be clustered as early in the course of follow-up, we decided not to perform additional post-hoc Cox regression analyses. A second potential limitation is the study’s single-center scope and sample size which, although relatively small (n=270, in a 1:2 ratio of childhood-onset AIS cases to unmatched, consecutive, contemporaneous, healthy pediatric controls), is nevertheless the largest pediatric study investigating the relationship between Lp(a) and AIS in a U.S. population. Still, given the small number of idiopathic AIS cases, we cannot exclude the possibility that elevated Lp(a) is a risk factor for incident cryptogenic childhood-onset AIS, and given the small number of recurrent AIS events, the estimates of recurrence risk associated with Lp(a) and apo(a) should be evaluated in larger follow-up studies. Thirdly, the question of whether Lp(a) is of increased importance for AIS risk in U.S. children in the setting of additional underlying thrombophilia traits is not addressed by this study. Larger, multicenter studies will be required to definitively address these issues. Notwithstanding these limitations, this study adds to the existing evidence that recurrence risk is increased among patients with elevated Lp(a). Based on our findings, it appears generally that Lp(a) measurement is more important for secondary prevention than for primary prevention.
of this disease in children, and that determination of apo(a) size also has important potential implications for clinical management in children who have a history of AIS, with regard to further risk-stratification. A potential implication of the study is that children with a prior episode of AIS in whom Lp(a) is >90th percentile or apo(a) predominant isoform size is <10th percentile of race-specific reference values could be considered for extended-duration of aspirin therapy (the current mainstay of long-term secondary AIS prevention in most children with incident AIS), particularly if such an approach is supported by safety and efficacy findings from future clinical trials. Collaborative studies are warranted to further investigate these findings, and more broadly to establish key risk factors for incident and recurrent AIS in children.
ACKNOWLEDGMENTS

The authors thank the patients and their families for generously participating in this research.

AUTHORSHIP AND DISCLOSURES

Each author listed on the manuscript fulfills ICMJE criteria for authorship, as follows (and no authors meeting said criteria have been omitted): (a) conception and design: NAG, TJB, SMM, MJM-J; (b) data collection: NAG, JH, JAW, JG, RK-C, LJ; (c) data analysis: NAG, SMM, LJ; (d) interpretation of findings: NAG, TJB, SMM, MJM-J; (e) initial drafting of manuscript: NAG; (f) manuscript review and approval for submission: NAG, TJB, JH, JAW, JG, RK-C, LJ, SMM, MJM-J.

Dr. Goldenberg was supported in part by a Career Development Award from the National Institutes of Health, National Heart Lung and Blood Institute (K23HL084055) and a Bayer Early Career Investigator Award. Dr. Bernard is supported in part by a Career Development Award from the National Institutes of Health, National Heart Lung and Blood Institute (K23HL096895). Dr. Manco-Johnson receives support from the Centers for Disease Control and Prevention (UR6/CCU820552).
REFERENCES

Table 1. Stroke subtypes, antithrombotic treatments, and outcomes in the childhood-onset AIS case group (n=43).

<table>
<thead>
<tr>
<th>Median (range) age at enrollment</th>
<th>10 y (0.8-20 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (male)</td>
<td>60%</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>91%</td>
</tr>
<tr>
<td>Black</td>
<td>5%</td>
</tr>
<tr>
<td>Asian</td>
<td>2%</td>
</tr>
<tr>
<td>Other</td>
<td>2%</td>
</tr>
<tr>
<td>Stroke subtype</td>
<td></td>
</tr>
<tr>
<td>Small vessel arteriopathy</td>
<td>2%</td>
</tr>
<tr>
<td>Unilateral focal cerebral (large vessel) arteriopathy</td>
<td>21%</td>
</tr>
<tr>
<td>Bilateral cerebral (large vessel) arteriopathy</td>
<td>12%</td>
</tr>
<tr>
<td>Aortic/cervical (large vessel) arteriopathy</td>
<td>23%</td>
</tr>
<tr>
<td>Cardioembolic</td>
<td>9%</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>33%</td>
</tr>
<tr>
<td>Sub-acute antithrombotic therapy*</td>
<td></td>
</tr>
<tr>
<td>ASA</td>
<td>51%</td>
</tr>
<tr>
<td>LMWH</td>
<td>12%</td>
</tr>
<tr>
<td>Warfarin</td>
<td>35%</td>
</tr>
<tr>
<td>None</td>
<td>2%</td>
</tr>
<tr>
<td>Extended antithrombotic therapy**</td>
<td></td>
</tr>
<tr>
<td>ASA</td>
<td>79%</td>
</tr>
<tr>
<td>Warfarin</td>
<td>12%</td>
</tr>
<tr>
<td>None</td>
<td>9%</td>
</tr>
<tr>
<td>Median (range) duration of antithrombotic therapy</td>
<td>24 mo (0-120 mo)</td>
</tr>
<tr>
<td>Median (range) duration of follow-up</td>
<td>36 mo (4-120 mo)</td>
</tr>
<tr>
<td>Recurrent AIS</td>
<td>16%</td>
</tr>
<tr>
<td>Median (range) time to recurrent AIS, from time of incident AIS</td>
<td>0.4 mo (0.25-34 mo)</td>
</tr>
</tbody>
</table>
* Predominant agent, during the period of 1 week to 3 months post-diagnosis;
** Predominant agent, after 3 months post-diagnosis
Table 2. Demographic data and Lp(a) results, by study group.

<table>
<thead>
<tr>
<th></th>
<th>Cases (n=43)</th>
<th>Controls (n=127)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (range) age at enrollment</td>
<td>10 y (0.8-20 y)</td>
<td>7 y (1-20 y)</td>
<td>0.16</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>60%</td>
<td>42%</td>
<td>0.04</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>91%</td>
<td>87%</td>
<td>0.60</td>
</tr>
<tr>
<td>Black</td>
<td>5%</td>
<td>11%</td>
<td>0.24</td>
</tr>
<tr>
<td>Asian</td>
<td>2%</td>
<td>0%</td>
<td>1.00</td>
</tr>
<tr>
<td>Other</td>
<td>2%</td>
<td>2%</td>
<td>1.00</td>
</tr>
<tr>
<td>Median (range) Lp(a) concentration</td>
<td>18.0 nM / 7.5 mg/dL (0.9-259 nM / 0.38-108.0 mg/dL)</td>
<td>20.4 nM / 8.5 mg/dL (0.2-282 nM / 0.08-117.5 mg/dL)</td>
<td>0.62</td>
</tr>
<tr>
<td>Median (range) Lp(a) race-specific percentile</td>
<td>47th (4th->99th)</td>
<td>44th (2nd->99th)</td>
<td>0.49</td>
</tr>
<tr>
<td>Median (range) # kringle-4 domains (predominant apo(a) isoform)</td>
<td>24 (16-33)</td>
<td>25 (12-37)</td>
<td>0.55</td>
</tr>
</tbody>
</table>
LEGEND TO FIGURES

Figure 1. Scatterplot of plasma fibrinolytic function, as measured by euglobulin lysis time (ELT) in the automated euglobulin clot lysis assay, for children with predominant apo(a) isoform size less than, versus greater than or equal to, the 25th percentile of normal values (i.e., small vs. normal apo[a]). ELT was significantly longer (suggesting relative hypofibrinolysis) among children with small apo(a).