The importance of harmonizing interim positron emission tomography in non-Hodgkin lymphoma: focus on the Deauville criteria

by Elske Quak, Narinée Hovhannisyan, Charline Lasnon, Christophe Fruchart, Jean-Pierre Vilque, Dada Musafiri, and Nicolas Aide

Haematologica 2014 [Epub ahead of print]

doi:10.3324/haematol.2014.104125

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
The importance of harmonizing interim positron emission tomography in non-Hodgkin lymphoma: focus on the Deauville criteria

Elske Quak¹, Narinée Hovhannisyan¹, Charline Lasnon¹,³, Christophe Fruchart², Jean-Pierre Vilque², Dada Musafiri² and Nicolas Aide¹,³

¹Department of Nuclear Medicine, François Baclesse Cancer Centre, Caen, France.
²Department of Haematology, François Baclesse Cancer Centre, Caen, France.
³Normandie Université, Caen, France

Correspondence

Elske Quak, MD, Service de Médecine Nucléaire
Centre François Baclesse Avenue Général Harris 14076 Caen cedex 5, France
E-mail: e.quak@baclesse.unicancer.fr

Key words: SUV, FDG PET/CT, non Hodgkin lymphoma, interim PET, PSF reconstruction.
We would like to draw the attention of the hematology and nuclear medicine communities on the importance of standardized uptake value (SUV) harmonization in response evaluation in non-Hodgkin lymphoma (NHL) patients.

In NHL patients, the response evaluation during treatment (interim positron emission tomography (PET)) is currently assessed by comparing the residual metabolic activity in the most active tumor lesion to the liver uptake. These PET-based response criteria are described in the Deauville five-point scale, in which the tumor-to-liver ratio is the discriminator between positive and negative test results. However, differing degrees in uptake in the tumor and reference background for different PET systems can mislead the reader in both the visual and quantitative analysis. This situation could be encountered in PET centers running several PET systems or during a system upgrade.

Therefore, visual and quantitative analysis of PET data in the setting of multicentre trials can only be done reliably if the PET procedure is standardized. Currently, initiatives such as the European Association of Nuclear Medicine (EANM) Research Ltd (EARL) accreditation for PET/CT systems (http://earl.eanm.org/cms/website.php) and the North American Quantitative Imaging Biomarker Alliance (QIBA) (http://qibawiki.rsna.org/index.php?title=Main_Page) aim to ensure comparable performance of PET/CT systems, in addition to the procedure guidelines for tumor PET imaging published by the EANM and the Society of Nuclear Medicine (SNM).

New generation PET systems generally outperform older PET systems in terms of spatial resolution and activity recovery, thereby increasing SUVs substantially. We studied the impact of SUV reconstruction dependency on the tumor-to-liver ratio in 23 NHL patients.
diffuse large B cell lymphoma (DLBCL), 6 follicular lymphoma and 4 other subtypes) with a total of 388 lesions. The local Ethics Committee (ref A12-D24-VOL13, Comité de protection des personnes Nord Ouest III) waived signed informed consent for this type of study.

To mimic a situation in which a patient would undergo a PET exam on different generation PET systems, we reconstructed the PET raw data of these patients with a former generation ordered subset expectation maximization (OSEM) algorithm known to meet the EANM guidelines, the recently commercially available point-spread function (PSF) reconstruction without filter for optimal tumor detection (PSF_allpass) and a PSF reconstruction with a Gaussian filter optimized to fulfill EANM requirements (PSF_EANM). A detailed description of the PSF_EANM strategy can be found in a previous publication.

The PET procedure was performed according to the EANM guidelines. All PET studies were performed on a Biograph TrueV (Siemens Medical Solutions) PET/CT system equipped with PSF reconstruction. Regions of interest (ROIs) were drawn on the axial slice on which lesions displayed the highest FDG uptake, by means of a 50% isocontour method, and the SUVmax for each lesion was measured. A fixed size ROI of 3 cm diameter was used to measure the SUVmax of the physiologic liver uptake in the middle of the right liver lobe. For each lesion and reconstruction type, the tumor-to-liver ratio was calculated by dividing the tumor SUVmax by the liver SUVmax. We chose the liver as the reference background, as this background seems preferable in early response assessment and it being the most frequently used cut-off for a positive or negative PET exam in the Deauville criteria. Although the liver SUVmean would theoretically be preferable over the liver SUVmax as the reference background, as this parameter is less noise dependent, the liver SUVmax is the parameter currently used in clinical practice and in multicentre trials. The tumor-to-liver ratios for OSEM, PSF_allpass and PSF_EANM were compared using Bland-Altman plots.
As illustrated in Figure 1, the PSF\textsubscript{allpass} image is optimal for visual analysis, with improved detection of small lesions and improved tumor delineation. Regarding the quantitative analysis, the tumor SUV\textsubscript{max} was found to be 54\% higher for PSF\textsubscript{allpass} compared to OSEM (ratio 1.54, 95\% CI: 0.95-2.14), whereas for PSF\textsubscript{EANM} versus OSEM no significant difference was found (ratio 1.04, 95\% CI: 0.93-1.14). Moreover, as shown in Figure 2, PSF\textsubscript{allpass} increased the tumor-to-liver ratio by 31\% (ratio 1.31, 95\% CI: 0.79-1.82) compared to OSEM. The ratio of the tumor-to-liver ratio for PSF\textsubscript{EANM} and OSEM was found to be 1.06 (95\% CI: 0.93-1.18), with a narrow 95\% confidence interval.

Our data confirm that technological advances in PET reconstruction can lead to an important increase in not only the tumor SUV\textsubscript{max} but also the tumor-to-liver ratio. The tumor-to-liver ratio as used in the Deauville criteria was increased by 31\% for the PSF\textsubscript{allpass} reconstruction. This finding is of major importance, because it shows that the discriminator between a positive and negative exam in NHL patients is PET system-dependent. Moreover, our data show that it is possible to get rid of reconstruction-dependent variations in SUV by applying an additional filtering step to the PSF\textsubscript{allpass} data. This strategy can be readily applied on any PET system. As advanced reconstruction algorithms such as PSF reconstruction are expected to gradually replace OSEM reconstructions, the choice of using a filtered PSF instead of OSEM reconstruction for the harmonized quantitative analysis might be preferable. This is also the technique proposed in the SUV\textsubscript{ref} methodology 11, which has the advantage of obviating the need to reconstruct two datasets. This methodology is not yet commercially available, and ideally should be vendor independent.

Of course, reconstruction parameters are not the only source of variation in SUV and tumor-to-liver ratios, and imaging protocols (including scanner calibration), patient preparation
(fasting period, uptake time between injection and scan) and data analysis (ROI definition) should be standardized and closely matched for serial PET scans.

In conclusion, when interpreting interim PET scans from different generation PET systems, we recommend the reconstruction of two image sets, one for optimal visual analysis and one for standardized quantification, whilst awaiting future developments that might allow for both analyses to be done on the same dataset.

The authors report no potential conflict of interest.

References

Figure 1. Improved visual analysis with a new generation PET system.

Representative coronal slices for PSF_{allpass}, OSEM, and PSF_{EANM} reconstructions in a patient with multiple NHL locations below the diaphragm. Note the improvement in activity recovery visible in a small lymph node on the PSF_{allpass} image (arrow) as well as the liver background that appears more intense on the PSF_{allpass} images. All images have been scaled on the same maximum value.

Figure 2. Harmonization of the tumour-to-liver ratio.

Relationship between quantitative values for the tumour-to-liver ratio (tumour SUV_{max} divided by liver SUV_{max} for 388 lesions) for PSF_{allpass}, OSEM and PSF_{EANM}, assessed by Bland-Altman plots.