Mapping epigenetic regulator gene mutations in cytogenetically normal pediatric acute myeloid leukemia

by Daria G. Valerio, Jenny E. Katsman-Kuipers, Joop H. Jansen, Lonneke J. Verboon, Valerie de Haas, Jan Stary, André Baruchel, Martin Zimmermann, Rob Pieters, Dirk Reinhardt, Marry M. van den Heuvel-Eibrink, and C. Michel Zwaan

Haematologica 2014 [Epub ahead of print]

doi:10.3324/haematol.2013.094565

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Mapping epigenetic regulator gene mutations in cytogenetically normal pediatric acute myeloid leukemia

Daria G. Valerio¹, Jenny E. Katsman-Kuipers¹, Joop H. Jansen², Lonneke J. Verboon¹, Valerie de Haas³, Jan Stary⁴, André Baruchel⁵, Martin Zimmermann⁶, Rob Pieters¹, Dirk Reinhardt⁶, Marry M. van den Heuvel-Eibrink¹, and C. Michel Zwaan¹

¹Department of Pediatric Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands; ²Department of Hematology, Radboud UMC, Nijmegen, The Netherlands; ³Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands; ⁴Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands; ⁵Pediatric Hematology/Oncology, 2nd Medical School, Charles University, Prague, Czech Republic; ⁶AP-HP, Hôpital Robert Debré and Université Paris Diderot, Paris, France; ⁷AML-BFM Study Group, Department of Pediatric Oncology/Hematology, Medical High School, Hannover, Germany

Acute myeloid leukemia (AML) accounts for approximately 15-20% of all childhood leukemias and despite dramatic improvements in treatment outcome, only approximately 70% of children with AML are cured.¹ AML results from collaborating genetic aberrations in at least 2 different classes; type-I aberrations, inducing uncontrolled cell proliferation and/or survival, and type-II aberrations inhibiting cell differentiation. However, certain aberrations found in AML do not completely fit into our current definition of type-I and type-II aberrations.² These aberrations concern epigenetic modifier genes, involved in DNA methylation and histone modification such as Ten-Eleven Translocation 2 (TET2), Isocitrate Dehydrogenase 1 (IDH1), IDH2, Enhancer of Zeste Homolog 2 (EZH2), DNA (cytosine-5)-Methyltransferase 3 Alpha (DNMT3A) and Additional Sex Combs Like-1 (ASXL1). Most of these genes are frequently mutated in adult AML patients with a prevalence varying between 12 to 35% per gene.³-⁷ Reports on prognostic implications of these mutations are ambiguous. It has, however, been shown that patients with IDH mutations have a hypermethylation phenotype. This implies that demethylating agents such as decitabine and azacytidine may be of use in the treatment of IDH-mutated AML. In addition, a favorable outcome in elderly AML patients with DNMT3A mutations after treatment with decitabine has been reported.⁷,⁸
In pediatric AML these epigenetic regulator genes were also studied. Most of these studies focus on the relevance of mutations in a single gene and mutations were detected in 1-4% of the patients.9–13 Although no significant statements can be made since study cohorts were quite heterogeneous, most mutations seemed to occur in cytogenetically normal (CN) AML, a subgroup that comprises 20-25% of all pediatric AML. This distribution corresponds to adult AML data in which most epigenetic regulator gene mutations were also identified in CN patients. So far, no larger study focusing on pediatric CN-AML is available and identifying these genetic aberrations may lead to improved risk stratification and a rationale for the use of demethylating agents in these patients. Therefore we decided to study the mutation prevalence of epigenetic regulator genes EZH2, IDH1/2, DNMT3A, ASXL1 and TET2 in a well-documented, international cohort of 65 de novo pediatric CN-AML patients.

Patient material was obtained from the Dutch Childhood Oncology Group (DCOG), the AML-Berlin-Frankfurt-Münster Study group (AML-BFM), the Czech Pediatric Hematology Group, and the Saint-Louis Hospital in Paris, France. Part of the (epigenetic regulator gene) mutations were included in previous reports, but not with the focus on CN-AML and never within one cohort.11–13 Exon 4 of IDH1/2, exon 13 of ASXL1, the SET-domain of EZH2 and the entire coding region of TET2 were screened using Sanger sequencing of genomic DNA. The mutational status of DNMT3A was assessed by screening cDNA and aberrations were verified in genomic DNA. The prevalence of cytogenetic and molecular aberrations was assessed as previously described.14

In our study cohort, aberrations in the genes IDH1 and IDH2 occurred with a frequency of 10.8% (95%CI ± 7.5%) and mutations in TET2 and DNMT3A were found with a frequency of 4.6% (95%CI ± 5.1%) each. While all aberrations in IDH1 and IDH2 were confined to codon 132 and 140 respectively, various mutation loci were observed in TET2 and DNMT3A. All epigenetic regulator gene mutations appeared to be mutually exclusive (Figure 1) and no mutations were identified in EZH2 or ASXL1. The number of mutated patients was too small to allow for survival analysis. The specifics of the identified aberrations and the main clinical and genetic features of the patients carrying an epigenetic regulator gene mutation are summarized in Table 1.
The epigenetic regulator gene mutations co-occurred with well-known type-I/II aberrations (Figure 1). Ten out of thirteen patients with an epigenetic regulator gene mutation also carried a FLT3-ITD (n=6) or RAS mutation (n=4), and six out of thirteen patients were found to have a CEBPA double mutation (n=1), NPM1 mutation (n=3) or NUP98-NSD1 translocation (n=2). Overall, epigenetic regulator gene mutations were shown to co-exist with both a type-I and type-II driver aberration in seven out of thirteen patients.

In this study of a substantial pediatric CN-AML cohort we have identified recurrent somatic mutations in the epigenetic regulator genes IDH1, IDH2, DNMT3A and TET2 in 13 out of 65 cases (20%). IDH1/2 mutations occurred significantly more often in pediatric CN-AML than in previously reported pediatric AML cohorts with patients carrying various cytogenetic aberrations (P=0.025). Although the aberration frequency of epigenetic regulator gene mutations is relatively high for a pediatric AML cohort, the prevalence is still evidently lower in pediatric CN-AML than in adult CN-AML patients. In addition, within adult AML, IDH2, ASXL1 and TET2 mutations are significantly more prevalent in elderly patients, suggesting an increasing prevalence of these mutations as a function of age. A recent study from Welch et al. identified DNMT3A, IDH1/2, TET2, ASXL1 and NPM1 mutations as possible major initiating or driver mutations in CN-AML, rather than cooperating events acquired at a later stage of clonal evolution. However, we found epigenetic regulator gene mutations in only 20% of our pediatric CN-AML cohort and in addition, these mutations often co-occurred with other type-I/II aberrations, thought to have leukemia driving capabilities such as NUP98-NSD1 and NPM1. This suggests that there might be other, thus far unidentified driver mutations in pediatric AML, reflecting potential differences in pathophysiology between childhood and adult AML. Future clonal evolution studies of pediatric CN-AML might lead to a better understanding of the initiating and cooperating events in this disease.

Mutations in ASXL1 and EZH2 were absent in our pediatric CN-AML cohort. This corresponds to literature in which reports of ASXL1 and EZH2 mutations in childhood AML are very limited. EZH2 mutations seem to be highly uncommon in pediatric as well as adult AML, in contrast to a high prevalence in other myeloid malignancies such as adult MDS.
In summary, we identified epigenetic regulator gene mutations to be mutually exclusive and recurrent, but infrequent in pediatric CN-AML. IDH1/2 aberrations were more frequent in pediatric CN-AML than in published series of other cytogenetic AML subgroups. The frequency of epigenetic regulator gene mutations is lower in pediatric than in adult CN-AML which underlines the difference in pathophysiology between the two. While at this time, there is insufficient rationale for routine screening of epigenetic regulator gene mutations in newly diagnosed pediatric CN-AML patients, new agents are emerging that may make screening more therapeutically appealing.

Correspondence: c.m.zwaan@erasmusmc.nl

Acknowledgements: The authors thank N. Gallimore and E. Tönnissen for their contribution to the experimental procedures.

Funding: DV, JEK-K and LJV were financially supported by KIKA, the Netherlands.

Disclosure: The authors declare no conflict of interest.

Contributions: D.G.V., M.M.v.d.H.-E., and C.M.Z. designed the study; V.d.H., J.S., A.B. and D.R. made this research possible by collecting patient samples and clinical data; D.G.V., J.H.J. and L.J.V. performed the experiments; D.G.V., J.E.K.-K., J.H.J., M.M.v.d.H.-E. and C.M.Z. analyzed and interpreted the data; D.G.V. and M.Z. performed statistical analysis; D.G.V. generated the table and figure; D.G.V., M.M.v.d.H.-E., and C.M.Z. wrote the manuscript; and all authors critically reviewed the manuscript and gave their final approval.
References

Table 1. Clinical and genetic characteristics of pediatric CN-AML cases carrying an epigenetic regulator gene mutation.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Patient</th>
<th>Mutation¹</th>
<th>Protein change²</th>
<th>Age (yrs)</th>
<th>Sex</th>
<th>WBC count (x10^9/μL)</th>
<th>Other mutations</th>
<th>Survival status</th>
<th>Months of follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDH1</td>
<td>2</td>
<td>c.395G>A</td>
<td>p.R132H</td>
<td>14.3</td>
<td>F</td>
<td>44.8</td>
<td>FLT3-ITD; MLL-PTD</td>
<td>Alive</td>
<td>50</td>
</tr>
<tr>
<td>IDH1</td>
<td>4</td>
<td>c.394C>T</td>
<td>p.R132C</td>
<td>12.6</td>
<td>F</td>
<td>3.0</td>
<td></td>
<td>Death after relapse</td>
<td>46</td>
</tr>
<tr>
<td>IDH1</td>
<td>5</td>
<td>c.395G>A</td>
<td>p.R132H</td>
<td>13.0</td>
<td>M</td>
<td>226.0</td>
<td>NUP98-NSD1; FLT3-ITD</td>
<td>Alive</td>
<td>32</td>
</tr>
<tr>
<td>IDH2</td>
<td>6</td>
<td>c.419G>A</td>
<td>p.R140Q</td>
<td>7.5</td>
<td>M</td>
<td>120.4</td>
<td>MLL-PTD; FLT3-ITD</td>
<td>Alive</td>
<td>71</td>
</tr>
<tr>
<td>IDH2</td>
<td>7</td>
<td>c.419G>A</td>
<td>p.R140Q</td>
<td>6.0</td>
<td>M</td>
<td>N/A</td>
<td>NPM1; FLT3-ITD</td>
<td>Alive</td>
<td>40</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>8</td>
<td>c.2146G>T</td>
<td>p.V716F</td>
<td>15.3</td>
<td>M</td>
<td>30.8</td>
<td>NPM1; N-RAS</td>
<td>Alive</td>
<td>65</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>9</td>
<td>c.2644C>T</td>
<td>p.R882C</td>
<td>8.4</td>
<td>M</td>
<td>25.0</td>
<td>WT1; FLT3-ITD</td>
<td>Alive</td>
<td>52</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>10</td>
<td>c.1450C>T</td>
<td>p.R484W</td>
<td>15.7</td>
<td>F</td>
<td>9.5</td>
<td>CEBPA dm</td>
<td>Alive</td>
<td>6</td>
</tr>
<tr>
<td>TET2</td>
<td>11</td>
<td>c.3803+2_3insT</td>
<td>Unknown</td>
<td>11.1</td>
<td>F</td>
<td>163.0</td>
<td>NPM1; FLT3-ITD</td>
<td>Alive</td>
<td>51</td>
</tr>
<tr>
<td>TET2</td>
<td>13</td>
<td>c.1599G>A</td>
<td>p.M533I</td>
<td>14.3</td>
<td>M</td>
<td>2.2</td>
<td></td>
<td>Alive</td>
<td>34</td>
</tr>
</tbody>
</table>

¹The nucleotide sequence variations are designated according to the recommendations of the Human Genome Variation Society (HGVS, http://www.hgvs.org/mutnomen/). Numbering of nucleotides is done by using the first base of the translated part of the gene as nucleotide 1. Transcripts used as a reference are: NM_005896.2 for IDH1, NM_002168.2 for IDH2, NM_175629.2 for DNMT3A and NM_001127208.2 for TET2 (National Center for Biotechnology Information).

²The protein changes are theoretically deduced and designated according to the recommendations of the HGVS.

yrs, years; F, female; M, male; N/A, not available; WBC count, white blood cell count; dm, double mutant.
Figure 1. Distribution of somatic mutations in 65 pediatric CN-AML patients.

Patients are represented vertically (1 column per patient) and molecular aberrations horizontally. Each mutated patient is represented by a colored rectangle, a wildtype patient by a white rectangle and when data are not available due to lack of patient material, the rectangle is grey. CEBPA is considered mutated in case of a double mutation only.