Gamma heavy chain disease lacks the *MYD88* l265p mutation associated with lymphoplasmacytic lymphoma

by Fatima Hamadeh, Stephen MacNamara, Chris M. Bacon, Aliyah R. Sohani, Steven H. Swerdlow, and James R. Cook

Haematologica 2014 [Epub ahead of print]

Citation: Hamadeh F, MacNamara S, Bacon CM, Sohani AR, Swerdlow SH, and Cook JR. Gamma heavy chain disease lacks the MYD88 l265p mutation associated with lymphoplasmacytic lymphoma. Haematologica. 2014; 99:xxx
doi:10.3324/haematol.2014.108688

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Gamma heavy chain disease lacks the MYD88 l265p mutation associated with lymphoplasmacytic lymphoma

Fatima Hamadeh,1 Stephen MacNamara,1 Chris M Bacon,2 Aliyah R. Sohani,3 Steven H. Swerdlow,4 James R. Cook1

1Cleveland Clinic, Cleveland, OH; 2Newcastle University, Newcastle-upon-Tyne, UK; 3Massachusetts General Hospital, Boston, MA; 4University of Pittsburgh, Pittsburgh, PA, USA

Gamma heavy chain disease (gHCD) is defined by an abnormally truncated IgG heavy chain monoclonal protein that lacks associated light chains and is secreted by a small B-cell neoplasm with plasmacytic differentiation.1,2 Clinically, gHCD is associated with a female predominance and a high incidence of concurrent autoimmune conditions. As in the past, the 2008 WHO classification designates gHCD as a variant of lymphoplasmacytic lymphoma (LPL),3 although it also states that gHCD is sufficiently distinctive to be considered a separate entity.4

In a recent study of the histopathologic findings in 13 cases of gHCD,5 we showed that gHCD is heterogeneous with some cases being morphologically typical of splenic marginal zone lymphoma (SMZL) or extranodal marginal zone (MALT) lymphoma, while other cases consist of a polymorphous B-cell neoplasm with predominantly small lymphocytes, plasmacytic differentiation, and variable numbers of admixed histiocytes and large transformed cells (Figure 1). This latter group of cases technically meets the 2008 WHO definition of LPL, which is largely a diagnosis of exclusion, even though they are not typical of classic nodal LPL which is characterized by preservation of sinuses and a relatively monomorphic small lymphoplasmacytic infiltrate.3,6,7 These histopathologic differences suggested that gHCD and typical LPL may in fact represent unrelated disorders.
In recent landmark studies, the *MYD88* L265P mutation, which results in increased signaling through the NF-κB pathway, was identified in >90% of Waldenstrom’s macroglobulinemia (WM), i.e., LPL with an IgM paraprotein.8–13 This mutation has also been reported in diffuse large B-cell lymphoma, at least some cases of IgG or IgA positive LPL, and approximately 50% of IgM MGUS, but is present in only a small minority of other small B-cell neoplasms. The *MYD88* L265P mutation therefore represents a diagnostically useful marker to assist in distinguishing LPL from other small B-cell neoplasms that may show plasmacytic differentiation.8–13 To further assess the potential relationship between gHCD and LPL, we analyzed a series of 11 gHCD cases involving lymph nodes, bone marrow or extramedullary tissues, and 10 cases of IgM positive, bone marrow based LPL/WM for the *MYD88* L265P mutation.

PCR was performed using 20ng DNA extracted from bone marrow aspirate, peripheral blood, or formalin-fixed, paraffin embedded tissues using the qBiomarker Somatic Mutation Assay for MYD88_85940 (Qiagen, Valencia, CA) on the LightCycler 480 (Roche, Indianapolis, IN). This assay employs two separate real-time reactions: one specific for the *MYD88* L265P mutation, and one which targets a reference, non-mutated portion of the *MYD88* gene. A crossing point (C\textsubscript{T}) value is calculated for the mutant and reference *MYD88* reactions, and a ΔC\textsubscript{T} is computed (ΔC\textsubscript{T} = C\textsubscript{Tmutant} - C\textsubscript{Treference}). Analysis of 120 normal peripheral blood samples identified a cutoff of ΔC\textsubscript{T} <10 for interpretation as positive for the *MYD88* L265P mutation. Serial dilutions of the *MYD88* L265P mutant cell line OCI-LY-10 demonstrated a limit of detection of 0.5% mutant alleles (1% heterozygous tumor cells).
The clinical and pathologic findings of the 11 cases of gHCD are shown in Table 1. Ten of these patients were previously reported.\(^5,14\) Remarkably, each of the 11 cases of gHCD was negative for the *MYD88* L265P mutation. In contrast, 9 of the 10 cases of LPL/WM were positive for the mutation. The single LPL/WM case negative for the mutation was a peripheral blood sample. Because PCR in this study was performed without prior B-cell purification, the neoplastic cells in this peripheral blood sample may have been below the limit of detection of this assay.

These findings show that gHCD lacks the *MYD88* L265P mutation that is characteristic of the vast majority of cases of LPL. Because this study utilized an allele-specific assay that targeted only the L265P mutation, the possibility of other *MYD88* mutations cannot be ruled out. Additional studies will be required to determine whether other recurrent abnormalities may be found in gHCD that may contribute to lymphomagenesis. In conjunction with our prior observation that gHCD is histologically diverse and rarely, if ever, resembles typical nodal cases of LPL, these results argue strongly that gHCD should no longer be considered a variant of LPL. Similarly, Randen *et al* have recently shown that primary cold agglutinin-associated lymphoproliferative disease lacks the *MYD88* L265P mutation and shows other features distinct from LPL.\(^15\) Together, these reports help further refine LPL as a diagnostic category.

DISCLOSURES: The authors have no conflicts of interest to disclose.

CONTRIBUTIONS: FH and SM performed experiments, analyzed data, and wrote the manuscript. CMB, ARS, and SHS contributed cases and wrote the manuscript. JRC designed the study, analyzed data, contributed cases and wrote the manuscript.
Table 1. Clinical and pathologic features of gHCD cases studied including results of *MYD88* L265P mutation analysis.

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Autoimmune History</th>
<th>Bone Marrow Involved</th>
<th>Site</th>
<th>Histology</th>
<th>B-cell Phenotype</th>
<th>MYD88 L265P</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>F</td>
<td>None</td>
<td>Yes</td>
<td>Spleen</td>
<td>Splenic lymphoma, unclassifiable</td>
<td>CD5 Neg CD10 Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>41</td>
<td>F</td>
<td>Hashimoto's</td>
<td>N/A</td>
<td>Thyroid</td>
<td>Extranodal MALT lymphoma</td>
<td>CD5 Neg CD10 Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>45</td>
<td>F</td>
<td>AIHA</td>
<td>Yes</td>
<td>BM</td>
<td>MGUS</td>
<td>CD5 Neg CD10 Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>46</td>
<td>M</td>
<td>RA</td>
<td>Yes</td>
<td>Lymph node</td>
<td>SBN-pc, NOS</td>
<td>CD5 Neg CD10 Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>46</td>
<td>F</td>
<td>SLE</td>
<td>No</td>
<td>Lymph node</td>
<td>SBN-pc, NOS</td>
<td>CD5 Neg CD10 N/A</td>
<td>Neg</td>
</tr>
<tr>
<td>48</td>
<td>F</td>
<td>SLE</td>
<td>Yes</td>
<td>Lymph node</td>
<td>SBN-pc, NOS</td>
<td>CD5 Neg CD10 N/A</td>
<td>Neg</td>
</tr>
<tr>
<td>54</td>
<td>F</td>
<td>SLE, Sjögren's, Raynaud's</td>
<td>No</td>
<td>Lymph node</td>
<td>SBN-pc, NOS</td>
<td>CD5 Neg CD10 Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>56</td>
<td>F</td>
<td>None</td>
<td>No</td>
<td>Spleen</td>
<td>SMZL</td>
<td>CD5 Neg CD10 Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>64</td>
<td>F</td>
<td>SLE</td>
<td>No</td>
<td>Lymph node</td>
<td>SBN-pc, NOS</td>
<td>CD5 N/A CD10 Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>69</td>
<td>F</td>
<td>None</td>
<td>Yes</td>
<td>Spleen</td>
<td>SBN-pc, NOS</td>
<td>CD5 Neg CD10 Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>77</td>
<td>F</td>
<td>Hashimoto's</td>
<td>Yes</td>
<td>Salivary gland</td>
<td>SBN-pc, NOS</td>
<td>CD5 Neg CD10 Neg</td>
<td>Neg</td>
</tr>
</tbody>
</table>

Abbreviations: AIHA – autoimmune hemolytic anemia; RA- rheumatoid arthritis; SLE – systemic lupus erythematosus; SBN-pc, NOS – small B-cell neoplasm with plasmacytic
differentiation, not otherwise specified; SMZL – splenic marginal zone lymphoma; Neg - Negative; N/A - not available.

Figure Legend

Figure 1. Seven cases (histologically classified as SBC-pc,NOS) showed similar morphologic features with a diffuse infiltrate of small lymphocytes, occasional large cells, plasma cells and histiocytes. The plasma cells are positive for IgG and are negative for kappa and lambda light chains by in situ hybridization. [Images from Munshi et al15. Copyright ©2008 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society]