Inhibition of c-Kit by tyrosine kinase inhibitors

by Allison Galanis and Mark Levis

Haematologica 2014 [Epub ahead of print]

Citation: Galanis A, and Levis M. Inhibition of c-Kit by tyrosine kinase inhibitors. Haematologica. 2014; 99:xxx
doi:10.3324/haematol.2014.117028

Publisher's Disclaimer.0
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Inhibition of c-Kit by tyrosine kinase inhibitors

Allison Galanis and Mark Levis

Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA

Correspondence
Mark Levis MD PhD, Kimmel Cancer Center at Johns Hopkins 1650 Orleans Street, Room 2M44 Baltimore, MD 21287 USA.
Phone: 410-502-3629. Fax: 410-614-1005. E-mail: levisma@jhmi.edu
Several small molecule tyrosine kinase inhibitors (TKIs) inhibit c-Kit, an effect associated with myelosuppression and hair depigmentation. We studied a panel of approved and investigational TKIs for inhibitory activity against FLT3 and c-Kit, and on hematopoietic progenitor cells. Potent c-Kit inhibitors such as dasatinib, pazopanib, and quizartinib demonstrated the greatest disruption of hematopoietic progenitor cells, while sorafenib, which has negligible activity against c-Kit, demonstrated only minimal disruption. Our data highlights the importance of determining a therapeutic index between the targeted receptor and c-Kit for TKIs used to treat malignancies in order to maintain normal hematopoiesis and improve outcomes.

Myelosuppression is a common adverse event in new drug development in oncology. Many tyrosine kinase inhibitors (TKIs) have activity against c-Kit, a receptor tyrosine kinase (RTK) which is essential for normal hematopoiesis. The c-Kit receptor is an important marker of long-term hematopoietic stem cells, and it also plays an important role in hair and skin pigmentation. For example, the W mouse, in which the function of c-Kit is impaired, has white spots, anemia, and reduced megakaryocytes, and c-Kit knockouts in transgenic mice is embryonic lethal (reviewed in 1). Patients treated with TKIs that inhibit c-Kit, therefore, are at risk for myelosuppression. In vivo c-Kit inhibition is also associated with hair depigmentation (Figure 1A). Drugs such as pazopanib and sunitinib, which have activity against c-Kit, do not induce myelosuppression in solid tumor patients when used as single agents. In contrast, dasatinib and imatinib, which also inhibit c-Kit, have been associated with myelosuppression in patients with Ph+ leukemia. In patients with relapsed/refractory FLT3/ITD AML, treatment with the FLT3 inhibitor quizartinib was associated with myelosuppression, whereas in a similar patient
population, a different FLT3 inhibitor, sorafenib, induced no myelosuppression.5, 6 To better understand the relationship between inhibition of c-Kit, FLT3, and marrow suppression, we studied a series of different TKIs using bone marrow progenitor cell assays and immunoblots.

Cell lines were cultured as described.2 TF-1 cells were obtained from the American Type Culture Collection (ATCC; Manassas VA) and grown in RPMI supplemented with GM-CSF (Invitrogen, Grand Island, NY). Quizartinib was obtained from Ambit Biosciences (San Diego, CA). Crenolanib was obtained from Arog Pharmaceuticals (Dallas, TX). Dasatinib, pazopanib, and imatinib were obtained from LC Laboratories (Woburn, MA). Electrophoresis, immunoblotting, and hematopoietic progenitor cell assays were performed as described.2 Cytokines used included SCF, G-CSF, GM-CSF, IL-3, IL-6, and erythropoietin. Unused portions of bone marrow from normal donors were collected under an institutional review board-approved Tumor and Cell Procurement Bank at Johns Hopkins (supported by grant P30CA006973-44). All donors gave informed consent according to the Declaration of Helsinki.

Dasatinib is a multi-targeted TKI with activity against Bcr-Abl, SRC, and c-Kit.7 The concentration of dasatinib necessary to inhibit 50% of baseline c-Kit activity (IC\textsubscript{50}) in TF-1 cells stimulated with stem cell factor (SCF) is 1.5 nM in culture medium and 30 nM in 100% human plasma (Figure 1B). The drug has a relatively short half-life of 3-5 hours and steady state concentrations are in the range of 20-40 nM.7 In progenitor cell assays, dasatinib had a modest effect on the formation of GM-CFUs (granulocyte-monoocyte colony forming units), and a greater effect on the formation of erythroid colonies (Figure 1C). Dasatinib has been reported to cause myelosuppression in leukemia patients,4 as well as hair depigmentation.8 Pazopanib, a
TKI approved for use in some solid tumors, is reported to be a potent inhibitor of VEGFR, PDGFR, and c-Kit.9 We found it to have an IC\textsubscript{50} against c-Kit in culture medium of 3.7 nM. While pazopanib has a seemingly high IC\textsubscript{50} against c-Kit in human plasma of 36 µM (due to high plasma protein binding) (Figure 1B), patients achieve trough drug levels over 50 µM.9 In progenitor cell assays, pazopanib, at concentrations corresponding to what is routinely achieved in patients, inhibited erythroid and myeloid progenitor cell activity to a similar degree as dasatinib (Figure 1C). Hair depigmentation is listed as a common adverse event in the FDA label for pazopanib, again, indicative of in vivo c-Kit inhibition. While both dasatinib and pazopanib are potent in vitro inhibitors of c-Kit, of the two drugs, only dasatinib has been reported to cause myelosuppression as monotherapy.4,9 Pazopanib is used exclusively to treat patients with solid tumors (who presumably have intact marrow function). However, when combined with cytotoxic drugs, pazopanib appears to exacerbate the chemotherapy-induced myelosuppression.10 Similarly, sunitinib, as monotherapy for solid tumor patients, is not associated with significant myelosuppression. However, in leukemia patients or in solid tumor patients in combination with chemotherapy, sunitinib exacerbates myelosuppression.11,12 A simple explanation for these findings is that c-Kit inhibition by itself does not induce clinically significant myelosuppression in the setting of normal bone marrow function.

Inhibition of c-Kit, therefore, correlates with hair depigmentation, inhibition of erythroid precursor activity in vitro, and, in leukemia patients, myelosuppression. Given the redundant signaling properties of c-Kit and FLT3,1 simultaneous inhibition of FLT3 and c-Kit could result in profound myelosuppression. Sorafenib is a potent FLT3 TKI (IC\textsubscript{50} in culture medium 3-5 nM) that has demonstrated efficacy in the treatment of relapsed/refractory FLT3/ITD AML patients.6
There is no reported inhibition of c-Kit by sorafenib, nor have there been any reports of myelosuppression (even in combination with chemotherapy). These observations are consistent with the results of our immunoblot (Figure 1B) and with progenitor cell assays (Figure 1C). In contrast, quizartinib is a potent FLT3 inhibitor (IC₅₀ in culture medium 2 nM; in plasma 18 nM), and a modestly potent c-Kit inhibitor with an IC₅₀ in culture medium of 28 nM. AML patients readily achieve micromolar plasma concentrations of this agent,¹³ and myelosuppression was observed in leukemia patients treated with quizartinib.⁵ Quizartinib inhibits both myeloid and erythroid hematopoietic progenitor cell activity (Figure 1C). Given that FLT3 inhibition alone (by sorafenib) did not inhibit colony activity, we conclude that quizartinib-induced myelosuppression is probably mediated through inhibition of c-Kit, rather than inhibition of FLT3. Interestingly, the most common clinical response to single agent therapy with quizartinib has been a complete remission with incomplete count recovery (“CRi”).⁵,¹³ The failure to recover normal hematopoietic function may be due in part to the inhibition of c-Kit by quizartinib.

While FLT3 inhibition by itself has no effect on hematopoiesis, it possibly still contributes to c-Kit-induced marrow suppression. Exogenous FLT3 ligand (FL) shifts the dose response to FLT3 inhibitors upward.¹⁴ If FLT3 inhibition were contributing to the suppression of hematopoietic progenitor cell induced by quizartinib, then the addition of FL would be predicted to blunt the inhibitory effect of quizartinib. In progenitor cell assays, we saw no significant difference in effect with 200 nM quizartinib with or without exogenous FL (10 ng/mL) (data not shown), suggesting that FLT3 inhibition does not contribute to marrow suppression from quizartinib.
We conclude that inhibition of c-KIT can translate into clinically significant marrow suppression, particularly when it occurs in the setting of cytotoxic chemotherapy, or when it is induced in a patient with a marrow disorder such as leukemia. The more potent c-Kit inhibitors impair erythroid, and myeloid progenitor cell function, but FLT3 inhibition probably has little effect on hematopoiesis. Table 1 lists seven TKIs according to their activity against both FLT3 and c-Kit receptors in culture medium and 100% human plasma. Each TKI was ranked according to its relative potency against c-Kit in vivo, using published pharmacokinetic data (when available), in vitro potency, the occurrence of hair depigmentation and myelosuppression. Given the clinical consequences of myelosuppression, the relative difference in inhibitory activity between the targeted kinase and c-Kit represents an important therapeutic index that must be accounted for in the development of TKIs. Hair depigmentation can represent a useful clinical surrogate for this phenomenon.

Authorship

Contribution: A.G. and M.L. designed the study, performed experiments, analyzed the data, and wrote the manuscript.

The authors declare no conflicts of interest.

Acknowledgements

This work was supported by the NCI Leukemia SPORE P50 CA100632-11.
References

<table>
<thead>
<tr>
<th>Drug</th>
<th>Target Disease</th>
<th>pFLT3 IC50 plasma</th>
<th>pcKIT IC50 plasma</th>
<th>Steady-state plasma levels</th>
<th>In vivo c-Kit inhibition</th>
<th>Hair depigmentation</th>
<th>Myelosuppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunitinib</td>
<td>GIST</td>
<td>39 nM</td>
<td>26 nM</td>
<td>82-135 nM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>RCC Sarcoma</td>
<td>N/A</td>
<td>36 μM</td>
<td>51-95 uM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quizartinib</td>
<td>AML</td>
<td>18 nM</td>
<td>2.7 μM</td>
<td>Not available</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dasatinib</td>
<td>CML</td>
<td>N/A</td>
<td>30 nM</td>
<td>20-40 nM</td>
<td>Partial</td>
<td>Occasional</td>
<td>Yes</td>
</tr>
<tr>
<td>Imatinib</td>
<td>CML</td>
<td>N/A</td>
<td>5.4 μM</td>
<td>2.5-5.3 uM</td>
<td>Partial</td>
<td>Occasional</td>
<td>Yes</td>
</tr>
<tr>
<td>Crenolanib</td>
<td>AML</td>
<td>48 nM</td>
<td>2.0 μM</td>
<td>Not available</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>HCC RCC</td>
<td>484 nM</td>
<td>>60 μM</td>
<td>10-15 uM</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1. Relative activity against FLT3 and c-KIT, and myelosuppressive activity of tyrosine kinase inhibitors. For FLT3, MOLM14 cells were incubated with drug for 1 hour, lysed, immunoprecipitated for FLT3, and immunoblotted for phospho- and total FLT3. For c-Kit, TF-1 cells were incubated with drug for 1hr with 20 ng SCF (PeproTech, Rocky Hill NJ) added to each sample in the last 5 minutes of drug incubation. The treated TF-1 cells were lysed, immunoprecipitated for c-Kit, and immunoblotted for phospho- and total c-Kit. Densitometry analysis was performed using Quantity One software (BioRad Inc., Hercules, CA, USA). The concentration of drug resulting in 50% inhibition from baseline (IC50) was calculated by regression analysis after linear conversion. Steady state plasma levels were obtained from published studies. In vivo c-Kit inhibition (most potent to least potent, top to bottom) was ranked according to the ability of each TKI to achieve sustained drug levels well above the calculated plasma IC50. The association of each TKI with hair depigmentation and
myelosuppression was determined based on each drug's FDA label and clinical studies referenced in the table. Abbreviations: GIST: Gastrointestinal stromal tumor; RCC: renal cell carcinoma; HCC: hepatocellular carcinoma.
Figure Legends

Figure 1

(A) An AML patient before treatment (left) and 54 days after treatment (right) with the c-Kit/FLT3 inhibitor, PLX3397 {Burton, 2011 #1126; Burton, 2011 #1126; Burton, 2011 #1126; Burton, 2011 #1126} (This compound is currently being studied in a phase 1 trial - see NCT01349049; pharmacokinetic data are not yet available for PLX3397, and so it was not included in this study). (B) TF-1 cells were treated with drug for 1 hour in cell culture medium or plasma, lysed, and immunoblotted for phospho- and total c-Kit. (C) Normal human bone marrow was collected and mononuclear cells were isolated. Mononuclear cells were plated in 35 mm dishes at a concentration of 100,000 cells per mL in MethoCult containing various concentrations of the indicated TKI in quadruplicate. Plates were analyzed 10-14 days later by morphology for total number of CFU-GM and BFU-E colonies. For each drug, the assay was performed using three separate marrow samples, and the results were averaged.