Gradual increase in thrombogenicity of juvenile platelets formed upon offset of prasugrel medication

by Constance C. F. M. J. Baaten, Leo F. Veenstra, Rick Wetzels, Johanna P. van Geffen, Frauke Swieringa, Susanne M. de Witt, Yvonne M. C. Henskens, Harry Crijns, Sven Nylander, J. J. J. van Giezen, Johan W. M. Heemskerk, and Paola E. J. van der Meijden

Haematologica 2015 [Epub ahead of print]

Citation: Baaten CC, Veenstra LF, Wetzels R, van Geffen JP, Swieringa F, de Witt SM, Henskens YM, Crijns H, Nylander S, van Giezen JJ, Heemskerk JW, and van der Meijden PE. Gradual increase in thrombogenicity of juvenile platelets formed upon offset of prasugrel medication. Haematologica. 2015; 100:xxx
doi:10.3324/haematol.2014.122457

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Gradual increase in thrombogenicity of juvenile platelets formed upon offset of prasugrel medication

Constance C. F. M. J. Baaten¹, Leo F. Veenstra², Rick Wetzels³, Johanna P. van Geffen¹, Frauke Swieringa¹, Susanne M. de Witt¹, Yvonne M. C. Henskens³, Harry Crijns², Sven Nylander⁴, J. J. J. van Giezen⁴, Johan W. M. Heemskerk¹ and Paola E. J. van der Meijden¹

¹Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
²Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
³Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
⁴AstraZeneca R&D, Mölndal, Sweden

Running title: Thrombogenicity of platelets upon prasugrel offset

Keywords: ADP receptors, juvenile platelets, ACS patients, prasugrel, ticagrelor

Word count: abstract 224, main text 3746
6 figures and 1 supplemental file

Correspondence: P.E.J. van der Meijden and J.W.M. Heemskerk, Department of Biochemistry (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. Tel. +31-43-3881671, Fax: +31-43-3884159; e-mail: p.vandermeijden@maastrichtuniversity.nl and jwm.heemskerk@maastrichtuniversity.nl
Abstract

In patients with acute coronary syndrome, dual antiplatelet therapy with aspirin and a P2Y$_{12}$ inhibitor like prasugrel is prescribed for one year. Here, we investigated how the hemostatic function of platelets recovers after discontinuation of prasugrel treatment. Therefore, sixteen patients who suffered from ST-elevation myocardial infarction were investigated. Patients were treated with aspirin (100 mg/day, long-term) and stopped taking prasugrel (10 mg/day) after one year. Blood was collected at the last day of prasugrel intake and at 1, 2, 5, 12 and 30 days later. Platelet function in response to ADP was normalized between 5 and 30 days after treatment cessation and \textit{in vitro} addition of the reversible P2Y$_{12}$ receptor antagonist ticagrelor fully suppressed the regained activation response. Discontinuation of prasugrel resulted in the formation of an emerging subpopulation of ADP-responsive platelets, exhibiting high expression of active integrin $\alpha_{IIb}\beta_{3}$. Two different mRNA probes, thiazole orange and the novel 5'Cy5-oligo-dT probe revealed that this subpopulation consisted of juvenile platelets, which progressively contributed to platelet aggregation and thrombus formation under flow. During offset, juvenile platelets were overall more reactive than older platelets. Interestingly, the responsiveness of both juvenile and older platelets increased in time, pointing towards a residual inhibitory effect of prasugrel on the megakaryocyte level. In conclusion, the gradual increase in thrombogenicity after cessation of prasugrel treatment is due the increased activity of juvenile platelets.
Introduction

The autocrine mediator ADP is a moderately strong platelet agonist, stimulating platelet aggregation and thrombus formation and contributing to thrombus stabilization. At present, the ADP receptor P2Y\textsubscript{12} is one of the most effective targets for antiplatelet therapy, i.e. by clopidogrel, prasugrel, and ticagrelor. Clopidogrel in combination with aspirin has been the standard therapy over the last decade to prevent recurrent atherothrombotic complications in patients who had a myocardial infarction. More recently, prescription of prasugrel or ticagrelor instead of clopidogrel is increasingly recommended following publication of the TRITON and PLATO studies, which demonstrated a net clinical benefit over clopidogrel on top of aspirin, due to a higher degree of platelet inhibition. The thienopyridines clopidogrel and prasugrel are both prodrugs, which require metabolic conversion to form an active metabolite that irreversibly interacts with the P2Y\textsubscript{12} receptors of circulating platelets. In contrast, ticagrelor is a reversible, non-competitive P2Y\textsubscript{12} antagonist – belonging to the cytopentyl-triazolo class of pyrimidines – interacting with the platelet receptors without metabolic conversion.

Due to the irreversible inhibition of the platelet P2Y\textsubscript{12} receptors by the active metabolites of clopidogrel and prasugrel, the formation of new platelets is required to recover platelet function. After ticagrelor treatment, recovery of platelet function is only determined by the elimination time of the drug (half-life of 8 hours). There is limited evidence that during the offset period of irreversible P2Y\textsubscript{12} inhibitors (usually prescribed for one year) patients may have an increased risk of a recurrent myocardial event. This may point to hyperactivity of the newly formed platelets in the offset period, although the mechanism is unclear.

Previous experiments with rats have indicated that stopping clopidogrel treatment resulted in the sudden appearance of a population of fully responsive platelets, whereas recovery from ticagrelor treatment led to a more gradual regain in function of all platelets. The newly formed, juvenile platelets with active P2Y\textsubscript{12} receptors seemed to preferentially
incorporate into thrombi generated under flow conditions.18

Juvenile platelets, also described as reticulated platelets because of the presence of reticular-bound mRNA, are those platelets that are shed most recently from the megakaryocytes in the bone marrow.19-21 Due to the gradual degradation of mRNA, they form only a small part of the entire platelet population. Only little is known about the properties of reticulated platelets, although incidental studies report on a larger size with more granules,22 and a high reactivity towards platelet agonists.23, 24 With a Sysmex analyzer, using cell-permeant fluorescent mRNA dyes containing polymethine and oxazine, or using the mRNA probe thiazole orange, evidence has been obtained that patients with more reticulated platelets respond less effective to clopidogrel or prasugrel medication.25-27

In the present study, we investigated how the hemostatic function of platelets recovers after discontinuation of prasugrel treatment. We hypothesized an immediate recovery of newly formed, juvenile platelets to the level of untreated platelets. Our data provide evidence for a critical role of the juvenile platelets in the regained aggregation of platelets and thrombus formation, and also show that these platelets gradually increase in responsiveness.

Methods

For a detailed description of the methods, please see the supplementary material.

Patients and control subjects

This study was approved by the local medical ethics committee (MEC 12-3-075). All patients and healthy volunteers gave written informed consent for participation according to the Helsinki declaration. Sixteen patients were studied who were treated with prasugrel (10 mg/day) for one year and long-term aspirin (80-100 mg/day) due to a myocardial infarction with ST elevation. After one year of prasugrel treatment, blood was collected on the last treatment day, and at 1, 2, 5 and 30 days later. From two patients, blood samples were also collected after 12 days to better understand the delayed regain of platelet function. Patients
with a malignancy, active infection or a known platelet disorder were not included. Blood was obtained by venipuncture into Vacuette tubes, containing K₂-EDTA, for measurement of hemostatic variables and immature platelet fraction (IPF) using a Sysmex XN-9000 analyzer (Sysmex, Chuo-ku Kobe, Japan); 3.2% (w/v) trisodium citrate for platelet function measurements, or hirudin for whole blood platelet aggregation. Control experiments were performed with blood drawn from healthy volunteers collected in trisodium citrate or acidic citrate dextrose.²⁸

Preparation of platelet-rich plasma, platelets and red cells

Platelet-rich plasma (PRP), platelet-free plasma and washed platelets were prepared as described.²⁹ Platelet counts were determined with a thrombocounter XP300 Sysmex analyzer (Sysmex, Chuo-ku Kobe, Japan). Washed red blood cells were prepared as shown before.³⁰

Irreversible P2Y₁₂ inhibition in vitro

PRP from healthy donors was treated with lysine aspirin.²⁸ The platelets were incubated with the active metabolite of clopidogrel (CAM) or vehicle medium. Mixtures of washed CAM-treated and vehicle-treated platelets were used for measurement of platelet aggregation, integrin αIIbβ₃ activation by flow cytometry and perfusion experiments with reconstituted whole blood.

Platelet aggregation

Aggregation of platelets in PRP was measured using a Chronolog aggregometer (Stago, Asnières sur Seine Cedex, France).³¹ Aggregation of platelets in whole blood was measured by Multiplate impedance aggregometry (Roche Diagnostics, Basel, Switzerland) as described.³² Ticagrelor (1 µM), being more potent than prasugrel,³³ was added *in vitro* to block residual P2Y₁₂ activity, where indicated.
Flow cytometric analysis of platelet subpopulations

Flow cytometry was performed on an Accuri C6 flow cytometer with CFlow Plus software (Becton-Dickinson Bioscience). To check for integrin \(\alpha_{\text{IIb}} \beta_3 \) activation, platelets were activated with 2MeS-ADP in the presence of FITC-conjugated PAC-1 antibody against the activated \(\alpha_{\text{IIb}} \beta_3 \) integrin. Activated platelets were identified as before.\(^{31}\) Ticagrelor (1 µM) was added, where indicated.

Juvenile platelets were identified using two different methods of mRNA staining, \(i.e. \) with thiazole orange\(^ {34}\) or by a novel method using Cy5-labeled oligo-dT, which binds to the poly-A tail of mRNA species. Thiazole orange (15% in filtered PBS) was added to PRP, according to established procedures.\(^ {34}\) Samples were activated with 2MeS-ADP in the presence of AF647-fibrinogen. For staining with 5'Cy5-oligo-dT, washed platelets were activated with 2MeS-ADP in the presence of OG488-fibrinogen. Samples were fixed with 0.2% formaldehyde, permeabilized with 0.1% saponin and subsequently incubated with 5'-Cy5-oligo-dT at 37 °C. For all samples, 5'Cy5-oligo-dA was used as a negative control probe to check for specificity of the staining. Color compensation was not required as fluorescent spectra did not overlap.

The average percentage of juvenile platelets as analyzed by the thiazole orange staining and the oligo-dT staining was 6.7% (± 1.9%) and 21.5% (± 5.8%) respectively. The discrepancy in the percentage of detected juvenile platelets can be explained by the higher sensitivity of the oligo-dT staining to detect mRNA in comparison to thiazole orange. In order to use a uniform definition of juvenile platelets, the threshold for juvenile platelets was based on the IPF as determined by the Sysmex XN9000 analyzer, which is an internationally validated method in the clinic. An alternative analysis of juvenile platelets, based on the negative controls of both stainings, is presented in the supplements (Suppl. Fig. 3).

Thrombus formation in whole blood

Whole blood thrombus formation on microspots in a parallel-plate flow chamber was measured, basically as described before.\(^ {35}\) Patient blood samples were perfused through the
chamber for 4 minutes at a wall-shear rate of 1600 s\(^{-1}\), while 2MeS-ADP (0.1 μM, f.c.) was co-perfused with a second pump. Ticagrelor was added where indicated. Thrombi were stained with AF647-labelled fibrinogen and, when indicated, with DiOC\(_6\).\(^{35}\) Brightfield and fluorescence microscopic images were captured with an EVOS fluorescence microscope, equipped with a 60x oil objective. Images were analyzed using Metamorph (Molecular Devices, Sunnyvale CA, USA) and ImageJ (open access) software.\(^{35}\)

For measurement of thrombus formation of reconstituted blood samples from healthy controls, mixtures of CAM- and vehicle-treated platelets were added to washed red cells and plasma. In these experiments, the CAM-treated and vehicle-treated platelets were pre-labeled with the membrane probes CellVue Maroon and PKH26 respectively. Microscopic DIC and confocal fluorescent images were taken using a Zeiss LSM7 microscope (Oberkochen, Germany).\(^{35}\)

Statistical analysis

Statistical analysis was performed using the SPSS Statistics 22 package (Armonk, NY, USA). Statistical analysis was performed using a one-way-repeated-measures-ANOVA or with a Friedman test with a post hoc Wilcoxon signed rank test. Bonferroni correction was applied when comparing multiple groups.

Results

P2Y\(_{12}\)-inhibited platelets participate less in thrombus formation

In order to determine how platelets with non-responsive P2Y\(_{12}\) receptors interact with responsive platelets in aggregation and thrombus formation, platelets from control subjects were treated with the clopidogrel active metabolite (CAM) and mixed in various proportions with untreated platelets. All platelets were also treated with aspirin, in order to mimic conditions as in patients (see below). Flow cytometric analysis indicated that, upon
stimulation with ADP, these platelet mixtures formed two distinct populations in terms of activation of integrin $\alpha_{\text{IIb}}\beta_3$ and binding of OG488-fibrinogen. The population of fibrinogen-binding platelets decreased with increasing fractions of CAM-treated platelets (Fig. 1A and Suppl. Fig. 1A). Addition of the P2Y$_{12}$ receptor antagonist ticagrelor decreased the population of fibrinogen-binding platelets to the level of 100% CAM-treated platelets (Fig. 1A), indicating that the CAM treatment had fully blocked the P2Y$_{12}$ receptors. Light transmission measurements indicated a gradual decrease in ADP-induced platelet aggregation, when the fraction of CAM-treated platelets increased (Fig. 1B). Addition of ticagrelor again antagonized the remaining aggregation response. Together, these data suggest that the reduced integrin activation of the CAM-treated platelets prevented their incorporation into aggregates.

To investigate this further, we assessed how the CAM-treated platelets participated in thrombus formation on immobilized collagen under high-shear flow conditions. Therefore, the P2Y$_{12}$-inhibited platelets were labelled with the red-exciting membrane label CellVue Maroon, whereas the untreated platelets were labeled with the green-exciting membrane label PKH26. This labeling did not affect platelet activation responses (data not shown). Mixtures with 0%, 50% or 100% of CAM-treated platelets were added to red blood cells and plasma from the same donor to obtain reconstituted blood with different proportions of P2Y$_{12}$-inhibited platelets. In comparison to reconstituted blood with solely uninhibited platelets, increasing proportions of CAM-treated platelets had limited impact on platelet adhesion to the collagen surface, but markedly suppressed the formation of large platelet aggregates (Suppl. Fig. 2). As a result, with CAM-treated platelets, surface area coverage (Fig. 1C) and mean thrombus size (Fig. 1D) on collagen progressively decreased. Strikingly, with 50% of CAM-treated platelets, about 30% of the surface area coverage was occupied by the P2Y$_{12}$ inhibited platelets, while the remaining 70% was occupied by the P2Y$_{12}$-responsive platelets. Together, these results indicate that P2Y$_{12}$-inhibited platelets participate less in platelet aggregation and thrombus formation.
Gradual restoration of platelet aggregation in patients upon prasugrel offset

The offset phase of prasugrel medication was studied in 16 patients. The patients had a mean age of 59 ± 9 years (mean ± SD); three patients were diagnosed with type II diabetes mellitus (Suppl. Table 1). Blood samples taken at day 0 (i.e. last day of prasugrel intake) showed a normal hematocrit of 0.435 ± 0.035 l/l and platelet count of 239 ± 81 x 10^9/l. Subsequent blood samples were taken at days 1, 2, 5, and 30, and no noticeable changes in hematocrit or platelet count were observed.

Measurements of whole blood aggregation (Multiplate assay) showed a gradual increase in ADP-induced aggregation upon offset from days 2 to 30 (Fig. 2A). Interestingly, the aggregation response further increased at day 30 in comparison to day 5. Whole blood aggregation in response to arachidonic acid remained below the normal range (Fig. 2B), thus confirming that all patients still used aspirin during the offset period. The aggregation responses to collagen and thrombin receptor-activating peptide (TRAP) were within the normal ranges, but slightly increased at later sampling points (Fig. 2C-D). Similarly, light transmission aggregometry in PRP indicated a restoration in ADP-induced platelet aggregation from day 2 onward (Fig. 3A). In this test, the aggregation response with two ADP concentrations was near maximal already at day 5. Collagen-induced platelet aggregation also significantly improved, but only at later time points (Fig. 3B). Control experiments in the presence of ticagrelor showed that the increase in aggregation during prasugrel offset was fully antagonized, confirming that the regained platelet reactivity was fully due to increased P2Y_{12} receptor function (Fig. 3A-B).

Formation of a highly reactive population of juvenile platelets upon prasugrel offset

Based on earlier experiments with rats,¹⁸ we expected during the offset phase of prasugrel medication the rapid formation of a population of newly formed, fully P2Y_{12}-responsive platelets. A pertinent question was how the regained response in P2Y_{12} receptor activity was linked to the appearance of this new platelet population. To investigate this, flow cytometry was used to analyze platelets stimulated with the stable (nucleotidase-resistant) ADP
analogue, 2MeS-ADP, for binding of FITC-labeled PAC-1 antibody, indicative of integrin
\(\alpha_{\text{Ib}}\beta_3 \) activation. At day 0, a limited fraction of 26 ± 9% of the platelets showed activated
\(\alpha_{\text{Ib}}\beta_3 \), and this fraction (recognized as a separate peak in the histograms) gradually
increased to 56 ± 5% at day 5 and 72 ± 7% at day 30 (Fig. 4A-B). In comparison, activation
of aspirin-treated platelets from healthy control subjects with 2MeS-ADP resulted in a similar
percentage of platelets with activated \(\alpha_{\text{Ib}}\beta_3 \) as platelets collected at 30 days after prasugrel
cessation (Fig. 4C). In platelets from patients (Fig. 4B) and healthy controls (Fig. 4C), the
fraction of platelets binding FITC-PAC1 antibody was greatly, but incompletely reduced by
the addition of ticagrelor. Co-incubations with the P2Y\(_1\) receptor antagonist MRS-2179
indicated that the residual \(\alpha_{\text{Ib}}\beta_3 \) activation was most likely due to activation via P2Y\(_1\)
receptors.

Several assays were performed to determine whether the accumulating platelets with
activated \(\alpha_{\text{Ib}}\beta_3 \) indeed consisted of newly formed, juvenile platelets. Therefore, platelet
mRNA was quantified using two different mRNA probes: thiazole orange as an established,
but weak fluorescent mRNA dye\(^{22}\); and 5'Cy5-labeled oligo-dT, binding to the platelet
mRNA poly-A tails\(^{21}\), which was added to pre-activated and permeabilized platelets.
Supplemental figure 3 shows typical dotplots of unstimulated and ADP-activated platelets
stained with the 5'Cy5-oligo-dT (Suppl. Fig. 3A-B) or thiazole orange (Suppl. Fig. 3C-D).
Juvenile and old platelets were discriminated per blood sample, based on the negative
control and the immature platelet fraction determined by Sysmex XN-9000 (Fig 5A). For the
majority of the patients, with one noticeable exception, the immature platelet fraction was in
the normal range, with mean values of 3.6 ± 1.9%, and remaining constant per patient during
the study (Fig. 5A). Markedly, with either mRNA probe (thiazole orange or 5'Cy5-oligo-dT),
the fraction of platelets with positive staining showed increased fibrinogen binding following
ADP stimulation from day 2 on (Fig. 5B-C). Fibrinogen binding (\(\alpha_{\text{Ib}}\beta_3 \) activation) of this
juvenile platelet population continued to increase from day 5 to day 30. The difference
between 5 and 30 days was significant for thiazole orange (\(p = 0.003 \)), and was borderline
significant for 5'Cy5-oligo-dT (\(p = 0.063 \)), thus suggesting partial inhibition of these platelets.
even after 5 days offset. With either mRNA probe, the fraction of (older) platelets with negative staining was substantially lower in fibrinogen binding, with noticeable increase of activated integrins only from day 5 onwards (Fig. 5B-C). The difference in fibrinogen binding between juvenile and older platelets was significant at all days (p < 0.001). These results were confirmed using an alternative analysis based on the appropriate negative controls (Suppl. Fig. 3.) Here again, the reactivity of juvenile platelets, expressed as activation ratio, was significantly higher in comparison to mature platelets at all days. Moreover, this analysis also shows the increasing reactivity of juvenile platelets over time for both stainings (Suppl. Fig 4A). Additional platelet measurements with a limited number of patients showed that, after 12 days of prasugrel discontinuation, the reactivity of juvenile platelets was in between the day 5 and 30 values (Suppl. Fig. 4B). Interestingly, in patients with a high immature platelet fraction (IPF ≥ 7.0%), the population of juvenile platelets showed a faster increase in fibrinogen binding, being near maximal already at day 5 of prasugrel offset (Suppl. Fig. 4A-B).

Gradual increase in thrombus size upon prasugrel offset

To investigate whether the increased reactivity of juvenile platelets after prasugrel cessation translates into enhanced thrombus formation, whole blood was perfused over microspots containing vWF/fibrinogen or type I collagen.\(^3^{5}\) Given the major role of P2Y\(_{12}\) signaling in thrombus build-up \(^3^{6}\), we determined thrombus size at the different time points. Regardless of the surface, at day 0 many single platelets and small aggregates were detected, whilst at later offset days larger aggregates were formed. From the recorded brightfield images it was apparent that the thrombi at days 5 and 30 displayed a more contracted morphology (Fig. 6A). Quantification of the feature size showed on both microspots a progressive increase in mean thrombus size during offset (Fig. 6B-C). On the other hand, platelet adhesion to vWF/fibrinogen or collagen was not changed between day 0 and 30, as surface area coverage (by single platelets and aggregates) remained similar (Suppl. Fig. 5A-B).

Staining of thrombi with AF647-labeled fibrinogen allowed assessment of integrin
α\textsubscript{IIb}β\textsubscript{3} activation. On both the vWF/fibrinogen and collagen microspots, a marked increase in fibrinogen binding to the aggregated platelets was detected for the later blood samples (Suppl. Fig. 6A-B). Addition of ticagrelor to the blood resulted in a nearly complete abolition of platelet aggregation at all offset days, but did not block platelet adhesion. With blood samples from a limited number of patients, staining with DiOC\textsubscript{6} made it possible to record z-stacks by confocal microscopy for 3D visualization of the thrombi. This illustrated the gradual increase in thrombus size from day 0 to day 5 and 30 (Suppl. Fig. 6C). Taken together, these results indicate that the accumulation of highly P2Y\textsubscript{12}-responsive, juvenile platelets upon prasugrel offset led to a gradual increase in formation of large-size thrombi.

Discussion

In this paper, we confirm earlier findings7, 9, 15, 16, 37 that when treatment with an irreversible P2Y\textsubscript{12} antagonist is stopped, platelet aggregation in response to ADP gradually recovers in time, when measured by light transmission aggregometry. Near maximal aggregation after stopping prasugrel intake was already reached at day 5, which is in line with results from earlier trials, such as Recovery showing recuperation of this platelet response after 7-9 days of prasugrel cessation.9 However, we also found that other platelet function tests, such as ADP-induced whole blood aggregation and integrin α\textsubscript{IIb}β\textsubscript{3} activation were incompletely recovered at day 5 in comparison to day 30. *In vitro* addition of ticagrelor completely antagonized the time-dependent increase in platelet responses, thereby proving that the recuperation was due to regained P2Y\textsubscript{12} signaling.

Detailed flow cytometric analysis indicated that the functional recovery during prasugrel offset was caused by the appearance of a population of juvenile platelets that was increasingly responsive towards ADP. Separation of newly formed and older platelets with two mRNA probes, thiazole orange and a new Cy5-conjugated oligo-dT probe, revealed increased responsiveness to ADP of the positively stained platelet population in terms of
integrin $\alpha_{\text{IIb}}\beta_3$ activation and fibrinogen binding. However, both probes also gave unexpected results. First, we observed a marked increase in ADP responsiveness of the juvenile platelet population after only two days of offset, and for the older platelet population after five days. This suggested that the majority of juvenile platelets formed during the first days still had inhibited P2Y$_{12}$ receptors, taking into account the presence of the prasugrel active metabolite in the circulation for 7-8 hours post prasugrel administration.38 Second, we found a steady rise in the responsiveness of juvenile platelets up to days 12 and 30 of offset. This also points towards residual ADP receptor inhibition of new platelets, likely at the megakaryocytic level, for more than 5 days. In agreement with this hypothesis, experimental animal models have shown that prasugrel is present in the bone marrow.39 An alternative explanation for this phenomenon might be a long-term increase in autocrine platelet-stimulating effects due to the larger population of P2Y$_{12}$-responsive platelets.3,40 However, flow cytometric analysis did not point to a higher extent of integrin $\alpha_{\text{IIb}}\beta_3$ activation of the ADP-responsive platelet population as a whole.

To determine how the increased reactivity of juvenile platelets translates into hemostasis, we studied thrombus formation under flow on two different adhesive surfaces using whole blood. Platelet deposition and aggregate formation on the vWF/fibrinogen and the collagen surfaces restored during the offset and was only maximal at day 30. The regained P2Y$_{12}$ activity was most apparent from thrombus size, with larger thrombi towards the end phase of the offset. This is in agreement with earlier work showing that signaling via P2Y$_{12}$ is crucial for thrombus formation and stabilization.1,36 Also others found a relative preponderance of thiazole orange-stained platelets in a thrombus.41

In recent years, it has been debated whether the termination of clopidogrel or prasugrel intake leads to a rebound effect of recurrent cardiovascular events, perhaps related to platelet hyper-reactivity. Several research groups did report a rebound effect within 90 days after cessation of clopidogrel,$^{13-17}$ while other researchers could not confirm this.$^{37,42-44}$ This discussion has led to clinical trials investigating the effect of tapering clopidogrel medication with the idea to prevent platelet hyper-reactivity, but with no beneficial effect so
The present work may explain this ambiguity in clinical offset effects. On the one hand, cessation of clopidogrel or prasugrel medication will lead to the appearance of the newly formed platelets with uninhibited P2Y\textsubscript{12} receptors, which preferentially partake in thrombus formation. On the other hand, as shown in this study, at least during the first few days these juvenile platelets do not appear to be hyperactive, possibly due to residual receptor blockage at the megakaryocyte level. When tapering the medication, the prolonged time interval between two consecutive dosages will result in the alternative formation of uninhibited and inhibited platelets.

The present study has potential limitations, as we have investigated a relative small number of patients. Further, in our initial ex vivo studies we used the active metabolite of clopidogrel. Although prasugrel is a more potent P2Y\textsubscript{12} antagonist in comparison to clopidogrel,5 we added the active metabolite of clopidogrel at concentrations high enough for maximal inhibition.

Patients on dual antiplatelet therapy who require surgery are recommended to stop prasugrel intake 7 days beforehand.9 Our findings that prasugrel can still affect the reactivity of juvenile platelets during several days after treatment cessation does not plea for a shortening of this period. The compromised reactivity of juvenile platelets during the initial days of offset can contribute to a risk of bleeding upon surgery. When urgent surgery is required or when bleeding has to be controlled, platelet transfusions have shown to be effective in restoring haemostasis at 6 hours after a loading dose of prasugrel.46 Altogether, the present study provides clinically relevant detailed insights into the mechanisms of prasugrel offset, and thereby provides better insight into the optimal treatment regimen of P2Y\textsubscript{12} inhibitors.

Acknowledgements

The authors thank S. Lelieveld and the central diagnostic laboratory for technical support and R. Dennert for assisting in patient recruitment.
Authorship and disclosures

Authorship: CCFMJB performed experiments, analyzed data and drafted the paper; RW, JPvG, FS, and SMdW performed experiments; LFV and HC recruited the patients; YMCH contributed analytical tools; SN and JJJvG designed research and drafted the paper; JMWH and PEJvdM designed research and drafted and finalized the paper.

Conflict of interest disclosure: Parts of this study were financially supported by AstraZeneca. SN and JJJvG are employees of AstraZeneca R&D, Mölndal, Sweden.

References

Figure legends

Figure 1. Impaired aggregation and contribution to thrombus formation of P2Y$_{12}$-inhibited platelets. (A, B) Different mixtures of uninhibited platelets and CAM-treated platelets were preincubated with vehicle or 1 μM ticagrelor, and stimulated with 20 μM 2MeS-ADP. (A) Fractions of OG488-fibrinogen binding platelets, representative for uninhibited platelets with activated integrin α$_{IIb}$β$_{3}$ (flow cytometry). (B) Maximal aggregation (% change in light transmission) within 5 minutes. (C, D) Reconstituted blood with different fractions of CAM-treated platelets was perfused 4 minutes over collagen at 1600 s$^{-1}$ in the presence of 2MeS-ADP. Uninhibited platelets were prelabeled with PKH26 and CAM-treated platelets with CellVue Maroon; for images see Suppl. Figure 2. (C) Quantification of the surface area covered by the populations of labelled platelets. (D) Mean thrombus size. Means ± SD (n = 3), *p < 0.05, **p < 0.01, ***p < 0.001 (ANOVA with Bonferroni correction).

Figure 2. Partial restoration of platelet aggregation in whole blood upon prasugrel offset. Whole blood samples from patients (at indicated days after stopping prasugrel intake) were stimulated with 6.4 μM ADP (A), 0.5 mM arachidonic acid (B), 3.2 μg/ml collagen (C), or 32 μM TRAP (D). Measurements by Multiplate impedance aggregometry; outcome expressed as the area under the impedance curve (AUC). Grey blocks indicate normal ranges, established for healthy subjects. Means ± SD (n = 15-16), *p < 0.05, **p < 0.01, ***p < 0.001 vs. day 0 (ANOVA with Bonferroni correction).

Figure 3. Restored ADP- and collagen-induced aggregation of platelets upon prasugrel offset. Patient PRP (at indicated days after stopping prasugrel intake) activated with 5-10 μM ADP (A) or 1-4 μg/ml collagen (B), in the presence or absence of 1 μM ticagrelor (blocking P2Y$_{12}$ receptors). Platelet aggregation was assessed by light transmission aggregometry (% change in maximal light transmission). Means ± SD (n = 16), *p < 0.05, **p < 0.01 and ***p < 0.001 vs. day 0 (ANOVA with Bonferroni correction).
Figure 4. Reappearance of ADP-responsive platelets upon prasugrel offset. Whole blood from patients or healthy controls was preincubated with vehicle, 1 μM ticagrelor or 50 μM MRS-2179 (as indicated), and then stimulated with 1 μM 2MeS-ADP. Activation of $\alpha_{\text{IIb}\beta_3}$ was assessed by flow cytometric analysis using FITC-labelled PAC-1 mAb. (A) Representative histograms of PAC-1 mAb binding to patient platelets stimulated with ADP (black) or unstimulated (grey) during offset. (B) Quantification of positive platelets. (C) Flow cytometric analysis of healthy control platelets. Means ± SD (n = 16), ***p < 0.001 vs. day 0 ADP (ANOVA with Bonferroni correction); #n = 15.

Figure 5. Increased ADP-induced $\alpha_{\text{IIb}\beta_3}$ activation of juvenile platelets formed upon prasugrel offset. Platelets from 16 patients during offset from prasugrel were activated and analyzed by flow cytometry, with per sample a gating for juvenile platelets based on the immature platelet fraction (Sysmex XN-9000 analyzer). (A) Immature platelet fraction for each of the patients during offset, as determined with a Sysmex XN-9000 analyzer. Red dots are from patient with a high immature platelet fraction (IPF = 8.8%). Juvenile platelets were identified by staining with thiazole orange or 5'Cy5-oligo-dT. (B) PRP was stained with thiazole orange and activated with 1 μM 2MeS-ADP in the presence of AF647-fibrinogen. Shown is extent of activated $\alpha_{\text{IIb}\beta_3}$ of thiazole-positive and -negative platelets, as assessed from fibrinogen binding. (C) Washed platelets were activated with 1 μM 2MeS-ADP in the presence of OG488-fibrinogen. The cells were subsequently fixed and permeabilized with saponin to allow staining of mRNA by incubation with 5'Cy5-oligo-dT. Negative control stains were performed with 5'Cy5-oligo-dA. Shown is extent of $\alpha_{\text{IIb}\beta_3}$ activation of mRNA-positive and -negative platelets, as determined from fibrinogen binding. Medians ± IQR (n = 16), ***p < 0.001 vs. corresponding mature platelet fraction (Friedman test).

Figure 6. Restored thrombus formation under flow upon prasugrel offset. Whole blood samples from patients (at indicated days after stopping prasugrel intake) were co-perfused with 0.1 μM 2MeS-ADP over microspots containing vWF/fibrinogen or collagen type I, at a
shear rate of 1600 s\(^{-1}\) for 4 minutes. Vehicle (control) or 10 µM ticagrelor was added to the blood. (A) Brightfield images of thrombi from a representative patient formed on the two microspots. Bars = 25 μm. Assessment of mean thrombus size for surfaces with vWF/fibrinogen (B) or collagen I (C). Means ± SD (n = 16), **p < 0.01, ***p < 0.001 vs. day 0 (ANOVA with Bonferroni correction); #n = 15.
A. OG488-fibrinogen binding (%)

- unstimulated
- ADP
- ticagrelor + ADP

<table>
<thead>
<tr>
<th>% CAM treated platelets</th>
<th>OG488-fibrinogen binding (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>75</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

B. Aggregation (%)

- ADP
- ticagrelor + ADP

<table>
<thead>
<tr>
<th>% CAM treated platelets</th>
<th>Aggregation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>75</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

C. Surface area coverage (%)

- untreated
- CAM-treated

<table>
<thead>
<tr>
<th>% CAM treated platelets</th>
<th>Surface area coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

D. Mean thrombus size (µm²)

<table>
<thead>
<tr>
<th>% CAM treated platelets</th>
<th>Mean thrombus size (µm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3000</td>
</tr>
<tr>
<td>50</td>
<td>2000</td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
</tr>
</tbody>
</table>
A

Thiazole orange

AF647-fibrinogen binding (Median FI, x1000)

Days offset

B

Thiazole orange

OG488-fibrinogen binding (Median FI, x1000)

Days offset

C

5’Cy5-oligo-dT

OG488-fibrinogen binding (Median FI, x1000)

Days offset

TO positive
- • unstimulated
- ▲ ADP
- ♦ ticagrelor + ADP

TO negative
- ● unstimulated
- ▲ ADP
- ♦ ticagrelor + ADP

RNA positive
- • unstimulated
- ▲ ADP
- ♦ ticagrelor + ADP

RNA negative
- ● unstimulated
- ▲ ADP
- ♦ ticagrelor + ADP
A

Day 0
Day 1
Day 2
Day 5
Day 30

vWF/fibrinogen
Collagen I

B

vWF/fibrinogen

Days offset

Collagen I

Days offset

Mean thrombus size (µm²)

Mean thrombus size (µm²)

control
ticagrelor

control
ticagrelor

**

**

Gradual increase in thrombogenicity of juvenile platelets formed
upon offset of prasugrel medication

Constance C. F. M. J. Baaten¹, Leo F. Veenstra², Rick Wetzels³, Johanna P. van Geffen¹,
Frauke Swieringa¹, Susanne M. de Witt¹, Yvonne M. C. Henskens³, Harry Crijns², Sven
Nylander⁴, J. J. J. van Giezen⁴, Johan W. M. Heemskerk¹ and Paola E. J. van der Meijden¹

¹Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht
University Medical Centre, Maastricht, The Netherlands

²Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht
University Medical Centre, Maastricht, The Netherlands

³Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The
Netherlands

⁴AstraZeneca R&D, Mölndal, Sweden

Supplements

Correspondence: P.E.J. van der Meijden and J.W.M. Heemskerk, Department of
Biochemistry (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The
Netherlands. Tel. +31-43-3881671, Fax: +31-43-3884159; e-mail:
p.vandermeijden@maastrichtuniversity.nl and jwm.heemskerk@maastrichtuniversity.nl
Supplements

Supplemental methods

Materials

2MeS-ADP and D-Phe-Pro-Arg chloromethyl ketone (PPACK) were from SantaCruz Biotechnology (Santa Cruz, CA, USA); fluorescein isothiocyanate (FITC)-conjugated PAC-1 antibody against active integrin \(\alpha_{\text{IIb}}\beta_3\) and thiazole orange from Becton-Dickinson Bioscience (Franklin Lakes NJ, USA), and aspirin was from Sanofi (Paris, France). Ticagrelor and the clopidogrel active metabolite (CAM) were kindly provided by AstraZeneca R&D (Mölndal, Sweden). 5'-Cy5-conjugated oligo-dA\(_{20}\) and oligo-dT\(_{20}\) were obtained from Eurogentec (Maastricht, The Netherlands). Alexa Fluor (AF)-647 and Oregon Green (OG)-488 conjugated human fibrinogen were from Invitrogen (Bleiswijk, The Netherlands). Collagen type I came from Nycomed Pharma (Munich, Germany); 3,3'-dihexyloxa carbocyanine iodide (DiOC\(_6\)) from Anaspec (Fremont CA, USA); CellVue Maroon from eBioscience (San Diego CA, USA), and iloprost from Bayer Pharma (Berlin, Germany). Multiplate test kits were from Roche Diagnostics (Basel, Switzerland). Other compounds came from Sigma (St. Louis, MO, USA).

Patients and control subjects

This study was approved by the local medical ethics committee (MEC 12-3-075). All patients and healthy volunteers gave written informed consent for participation according to the Helsinki declaration. Sixteen patients were studied who were treated with prasugrel (10 mg/day) for one year and long-term aspirin (80-100 mg/day) due to a myocardial infarction with ST elevation. After one year of prasugrel treatment, blood was collected on the last day of prasugrel intake, and at 1, 2, 5 and 30 days after the last dose. From two patients, blood samples were also collected after 12 days to better understand the delayed regain of platelet function. Patients with a malignancy, active infection or a known platelet disorder were not included. Blood was obtained by venipuncture with a Vacutainer 21-gauge needle (Becton-Dickinson Bioscience). Blood collection was into Vacuette tubes, containing K\(_2\)-EDTA, for measurement of hemostatic variables and immature platelet fraction using a Sysmex XN-9000 analyzer, according to protocols of the supplier (Sysmex, Chuo-ku Kobe, Japan). Blood samples were also collected into 3.2% (w/v) trisodium citrate for platelet function measurements, and into hirudin for whole-blood platelet aggregation. Control experiments were performed with blood drawn from healthy volunteers. Collection was into trisodium citrate, or into acidic citrate dextrose (ACD, 80 mM trisodium citrate, 52 mM citric acid and 180 mM glucose) for the preparation of washed platelets.\(^1\)
Preparation of platelet-rich plasma, platelets and red cells

Platelet-rich plasma (PRP) was prepared by centrifuging citrate-anticoagulated blood at 240 g for 15 minutes at room temperature. Platelet-free plasma was obtained by centrifuging citrate-anticoagulated blood twice at 2630 g for 10 minutes. Washed platelets were prepared from ACD-anticoagulated blood, as described, and were suspended in Hepes buffer pH 7.45 (10 mM Hepes, 136 mM NaCl, 2.7 mM KCl, 2 mM MgCl$_2$, 0.1% glucose and 0.1% bovine serum albumin). Platelet counts were determined with a thrombocounter XP300 Sysmex analyzer (Sysmex, Chuo-ku Kobe, Japan).

Washed red blood cells were prepared by centrifuging citrate-anticoagulated blood at 240 g for 15 minutes at room temperature. After removal of PRP, Hepes buffer pH 7.45 was added in a 1:2 volume ratio. The red blood cells were centrifuged twice at 2630 g for 10 minutes, with resuspension in Hepes buffer pH 7.45. This resulted in a preparation of >99.9% red cells.

Irreversible P2Y$_{12}$ inhibition in vitro

PRP from healthy donors was treated with 100 μM lysine aspirin for 30 minutes, and platelets were pelleted by centrifugation. The resuspended cells were incubated for 15 minutes with 10 μM CAM or vehicle medium. Residual unbound CAM was removed by a second final centrifugation step, where 5 nM iloprost was added to prevent platelet activation. Mixtures of the washed CAM-treated and vehicle-treated platelets in Hepes buffer pH 7.45 were used for measurement of: platelet aggregation (light transmission aggregometry in the presence of 2 mM CaCl$_2$ and 0.1 mg/ml fibrinogen); integrin α$_{IIb}$β$_3$ activation by flow cytometry in the presence of 75 μg/ml OG488-fibrinogen; and perfusion experiments with reconstituted whole blood.

Platelet aggregation

Aggregation of platelets in PRP was measured using a Chronolog aggregometer (Stago, Asnières sur Seine Cedex, France). Preincubation with ticagrelor or vehicle medium was for 5 minutes at 37 °C. Aggregation of platelets in whole blood was measured by Multiplate impedance aggregometry (Roche Diagnostics, Basel, Switzerland) as described. Aggregation was measured in response to ADP (6.4 μM), arachidonic acid (0.5 mM), collagen (3.2 μg/ml) or thrombin receptor-activating peptide SFLLRN (TRAP, 32 μM) at 37 °C during 6 minutes. Ticagrelor (1 μM) was added in vitro to block residual P2Y$_{12}$ activity, where indicated. Extent of platelet aggregation was assessed from the area under the impedance curve.
Flow cytometric analysis of platelet subpopulations

Flow cytometric measurements were performed on an Accuri C6 flow cytometer with CFlow Plus software (Becton-Dickinson Bioscience). To check for integrin α\textsubscript{IIb}β\textsubscript{3} activation, samples of citrated patient blood were diluted (1:20) into Hepes buffer pH 7.45, and incubated with 1 µM ticagrelor or vehicle control for 15 minutes at room temperature. Platelets were activated with 1 µM 2MeS-ADP in the presence of FITC-conjugated PAC-1 antibody (1.25 µg/ml) against the activated α\textsubscript{IIb}β\textsubscript{3} integrin for 10 minutes. Ticagrelor (1 µM) was added, where indicated. Activated platelets were identified as before.5

Juvenile platelets were identified using two different methods of mRNA staining, \textit{i.e.} with thiazole orange 6 or by a novel method using Cy5-labelled oligo-dT, which binds to the poly-A tail of mRNA species. Thiazole orange (15% in filtered PBS: 136 mM NaCl, 2.7 mM KCl, 1.47 mM KH\textsubscript{2}PO\textsubscript{4}, 6.46 mM Na\textsubscript{2}HPO\textsubscript{4}) was added to PRP for 30 minutes at room temperature, according to established procedures.6 Platelets were then centrifuged at 5550 g for 3 minutes to remove excess and unbound thiazole orange, and resuspended in Hepes buffer pH 7.45. Samples were activated with 1 µM 2MeS-ADP in the presence of AF647-fibrinogen (75 µg/ml) for 15 minutes. For staining with 5'Cy5-oligo-dT, washed platelets in suspension (1 x 108/ml) were activated with 1 µM 2MeS-ADP in the presence of OG488-fibrinogen (75 µg/ml) for 15 minutes. Samples were fixed (15 minutes) with 0.2% formaldehyde and permeabilized (10 minutes) with 0.1% saponin. 5'-Cy5-oligo-dT (1 µM) was incubated for 15 minutes at 37 °C. For all samples, 5'Cy5-oligo-dA (1 µM) was used as a negative control probe to check for specificity of the staining with 5'Cy5-oligo-dT. Color compensation was not required as fluorescent spectra did not overlap.

The average percentage of juvenile platelets as analyzed by the thiazole orange staining and the oligo-dT staining was 6.7% (± 1.9%) and 21.5% (± 5.8%) respectively. The discrepancy in the percentage of detected juvenile platelets can be explained by the higher sensitivity of the oligo-dT staining to detect mRNA in comparison to thiazole orange. In order to use a uniform definition of juvenile platelets, the threshold for juvenile platelets was based on the IPF as determined by the Sysmex XN9000 analyzer, which is an internationally validated method in the clinic. An alternative analysis of juvenile platelets, based on the negative controls of both stainings, is presented in the supplements (Suppl. Fig. 3).

Thrombus formation in whole blood

Whole-blood thrombus formation on microspots in a parallel-plate flow chamber was measured, basically as described before.7 Briefly, 0.5 µl microspots containing either collagen I (100 µg/ml) or fibrinogen (250 µg/ml) plus vWF (50 µg/ml) were perfused with citrate-anticoagulated whole blood, which was recalcified with 7.5 mM CaCl\textsubscript{2} and 3.75 mM MgCl\textsubscript{2} in the presence of 40 µM PPACK immediately before the experiment. Patient blood
samples were perfused through the chamber for 4 minutes at a wall-shear rate of 1600 s⁻¹, while 2MeS-ADP (0.1 μM, f.c.) was co-perfused with a second pump. Ticagrelor was added where indicated. Thrombi were stained with AF647-labelled fibrinogen and, when indicated, DiOC₆, as described elsewhere. Brightfield and fluorescence microscopic images were captured with an EVOS fluorescence microscope, equipped with a 60x oil objective. Images were analysed using Metamorph (Molecular Devices, Sunnyvale CA, USA) and ImageJ (open access) software.

For measurement of thrombus formation of reconstituted blood samples from healthy controls, mixtures of CAM- and vehicle-treated platelets (2.5 x 10⁸/ml, final count) were added to washed red cells (45% hematocrit) and plasma (30-35% of total volume). In these experiments, the CAM-treated platelets were pre-labeled with the membrane probe CellVue Maroon (1.6 μM), whereas the vehicle-treated platelets were pre-labeled with the membrane probe PKH26 (0.8 μM). Both probes were not transferrable from cell to cell (data not shown). The reconstituted whole blood was again co-perfused with 2MeS-ADP over collagen. Microscopic DIC and confocal fluorescent images were taken using a Zeiss LSM7 microscope (Oberkochen, Germany).

Statistical analysis
Statistical analysis was performed using the SPSS Statistics 22 package (Armonk, NY, USA). Statistical analysis was performed using a one-way-repeated-measures-ANOVA or with a Friedman test with a post hoc Wilcoxon signed rank test. Bonferroni correction was applied when comparing multiple groups.

References
Supplemental Table 1. Study characteristics. Means ± SD.

Variables

Patient characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>59 ± 9</td>
</tr>
<tr>
<td>Female/male (n)</td>
<td>3/13</td>
</tr>
<tr>
<td>Diabetes mellitus (n)</td>
<td>3</td>
</tr>
<tr>
<td>Aspirin use (n)</td>
<td>16</td>
</tr>
<tr>
<td>Statins use (n)</td>
<td>13</td>
</tr>
</tbody>
</table>

Hematologic variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit (l/l)</td>
<td>0.435 ± 0.035</td>
</tr>
<tr>
<td>Platelet count (10⁹/l)</td>
<td>239 ± 81</td>
</tr>
<tr>
<td>Mean platelet volume (fl)</td>
<td>10.8 ± 0.7</td>
</tr>
<tr>
<td>Immature platelet fraction (IPF) Sysmex (%)</td>
<td>3.6 ± 1.9</td>
</tr>
</tbody>
</table>
Supplemental figures

Suppl. Figure 1. Impaired fibrinogen binding of populations of P2Y\(_{12}\)-inhibited platelets. Mixtures of control platelets and CAM-treated platelets were preincubated with 1 μM ticagrelor or vehicle, and stimulated for 15 minutes with 20 μM 2MeS-ADP in the presence of OG488-fibrinogen. Fibrinogen binding was assessed by flow cytometry. Shown are representative histograms of fibrinogen binding after stimulation in the presence of vehicle (A) or ticagrelor (B).
Suppl. Figure 2. Impaired contribution to thrombus formation of P2Y_{12}-inhibited platelets.

Reconstituted blood with different fractions of CAM-treated platelets was perfused 4 minutes over collagen at 1600 s^{-1} in the presence of 2MeS-ADP. Uninhibited platelets were prelabeled with PKH26 (blue) and CAM-treated platelets with CellVue Maroon (red). Shown are representative DIC (A) and dual-color fluorescence (B) images. Bars = 25 µm. See further, Figure 1.
Juvenile platelets were detected using the oligo-dT staining or the thiazole orange staining, as described for Figure 5. Shown are representative dot plots of oligo-dA/dT or thiazole orange vs. Fg-OG488/AF647. Thresholds for juvenile and mature platelets were based on the negative controls oligo-dA and PBS for the oligo-dT and thiazole orange staining respectively. Thresholds for activated platelets were based on unstimulated samples. Unstimulated juvenile platelets (blue) and activated juvenile platelets (green) are depicted. Representative dot plots of unstimulated (A) or ADP-activated (B) platelets are shown.

Suppl. Figure 3. Alternative analysis confirms higher reactivity of juvenile platelets and increased activation in time upon prasugrel offset.

<table>
<thead>
<tr>
<th></th>
<th>Day 0</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 5</th>
<th>Day 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligo-dT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mature</td>
<td>0.17 (±0.03)</td>
<td>0.24 (±0.03)</td>
<td>0.33 (±0.03)</td>
<td>0.82 (±0.10)</td>
<td>2.70 (±0.26)</td>
</tr>
<tr>
<td>Juvenile</td>
<td>0.44 (±0.08)</td>
<td>0.66 (±0.11)</td>
<td>0.84 (±0.09)</td>
<td>1.81 (±0.22)</td>
<td>6.30 (±0.99)</td>
</tr>
<tr>
<td>Thiazole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mature</td>
<td>0.18 (±0.04)</td>
<td>0.24 (±0.04)</td>
<td>0.41 (±0.06)</td>
<td>1.02 (±0.12)</td>
<td>3.35 (±0.59)</td>
</tr>
<tr>
<td>Juvenile</td>
<td>0.38 (±0.08)</td>
<td>0.50 (±0.08)</td>
<td>0.92 (±0.13)</td>
<td>2.42 (±0.27)</td>
<td>8.18 (±1.32)</td>
</tr>
</tbody>
</table>
mature and juvenile platelets as identified by the oligo-dT staining. Representative dot plots of unstimulated (C) or ADP-activated (D) mature and juvenile platelets using the thiazole orange staining.

Table. Using the percentage of platelets in each quadrant of the dot plots, the activation ratio was calculated for both mature (Q-UL/Q-LL) and juvenile platelets (Q-UR/Q-LR) using either staining. Mean ± SEM (n =16), *p < 0.05, **p < 0.01, ***p < 0.001 vs. corresponding mature ratio (ANOVA with Bonferroni correction).
Suppl. Figure 4. Increased ADP-induced αIIbβ3 activation of juvenile platelets formed upon prasugrel offset. Platelets from patients during offset from prasugrel were activated and analyzed by flow cytometry. Juvenile platelets were identified by staining with the mRNA probe, 5'Cy5-oligo-dT. See further Figure 5. Washed platelets were activated with 1 μM 2MeS-ADP in the presence of OG488-fibrinogen. The cells were fixed and permeabilized with saponin to allow staining of mRNA by incubation with 5'Cy5-oligo-dT. Shown is extent of αIIbβ3 activation of mRNA-positive and -negative platelets, per subject. (A) Data from 16 patients, medians ± IQR. (B) Data from additional patients including day 12 time points. Red dots are from patients with a high immature platelet fraction (IPF ≥ 7.0%).
Suppl. Figure 5. Unchanged platelet adhesion in thrombus formation under flow upon prasugrel offset. Whole blood samples from patients (at indicated days after stopping prasugrel intake) were co-perfused with 2MeS-ADP over microspots containing vWF/fibrinogen (A) or collagen type I (B), as in Figure 6. Brightfield images were analyzed for surface area coverage of all platelets (single platelets and aggregates) at different offset days. Means ± SD (n = 16), ***p < 0.001 vs. day 0 (ANOVA with Bonferroni correction); #n = 15.
Suppl. Figure 6. Restored thrombus formation under flow upon prasugrel offset. Whole blood samples from patients (at indicated days after stopping prasugrel intake) were co-perfused with 2MeS-ADP over microspots containing vWF/fibrinogen or collagen type I, at a shear rate of 1600 s\(^{-1}\) for 4 minutes. See also Figure 6. Staining of thrombi was with AF647-fibrinogen and the platelet membrane label DiOC\(_6\). Vehicle (control) or 10 µM ticagrelor was added to the blood. (A, B) Shown are (for a representative patient) fluorescence images of fibrinogen binding (red) of the thrombi.
formed on vWF/fibrinogen or collagen I. Bars = 25 μm. (C, D) Representative confocal z-stacks of thrombi on vWF/fibrinogen or collagen I stained with DiOC₆ (green).