Relevant role of von Willebrand factor in neutrophil recruitment in a mouse sepsis model involving cecal ligation and puncture

by Shogo Kasuda, Hideto Matsui, Shiro Ono, Yasunori Matsunari, Kenji Nishio, Midori Shima, Katsuhiko Hatake, and Mitsuhiko Sugimoto

Haematologica 2015 [Epub ahead of print]

Citation: Kasuda S, Matsui H, Ono S, Matsunari Y, Nishio K, Shima M, Hatake K, and Sugimoto M. Relevant role of von Willebrand factor in neutrophil recruitment in a mouse sepsis model involving cecal ligation and puncture. Haematologica. 2015; 100:xxx

doi:10.3324/haematol.2015.135434

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Relevant role of von Willebrand factor in neutrophil recruitment in a mouse sepsis model involving cecal ligation and puncture

Shogo Kasuda1*, Hideto Matsui2, Shiro Ono2, Yasunori Matsunari2, Kenji Nishio3, Midori Shima4, Katsuhiko Hatake1 and Mitsuhiko Sugimoto2*

Departments of Legal Medicine1, Regulatory Medicine for Thrombosis2, General Medicine3 and Pediatrics4, Nara Medical University, Kashihara, Japan

Running heads: Role of VWF in mouse sepsis

Correspondence
Mitsuhiko Sugimoto, M.D. or Shogo Kasuda, M.D.
Department of Regulatory Medicine for Thrombosis or Legal Medicine,
Nara Medical University,
840 Shijo-cho, Kashihara, Nara 634-8521, Japan
Phone: international +81-744-23-9961; Fax: international +81-744-23-9962
E-mail: sugi-ped@naramed-u.ac.jp or skasda@naramed-u.ac.jp
Acknowledgments

The authors would like to thank Ayuri Nakamura for her technical assistance. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 19591129 to M. Sugimoto), the 6th Baxter Coagulation Research Fund (to S. K.), and the Takeda Science Foundation (to M. Sugimoto).
Sepsis is a systemic inflammatory response syndrome caused by severe microbial infection. Uncontrollable activation of both inflammatory and coagulation pathways may result in multiple organ failure, a leading cause of death in intensive care unit even in developed countries.

An adhesive protein von Willebrand factor (VWF) plays a pivotal role on hemostasis and thrombosis by mediating platelet adhesion and aggregation\(^1\), but is also known to be an acute-phase reactant whose plasma concentration is significantly increased in response to inflammation\(^1,2\). From the standpoint of the human defense system, VWF could therefore be a key protein serving as a functional link between inflammation and thrombosis\(^2\). Indeed, recent mouse model studies demonstrated that proper functional regulation of VWF-dependent inflammatory responses by ADAMTS13 considerably suppressed disease progression of brain stroke\(^3,4\) or myocardial infarction\(^5,6\). However, the precise mechanisms or relevant roles of VWF in inflammation remain poorly understood thus far. We therefore studied the physiologic relevance of VWF-dependent inflammatory responses in a mouse model of experimental sepsis involving cecal ligation and puncture (CLP).

VWF gene-deleted (VWF\(^{-/-}\); knock-out: KO) mice with C57BL/6 background were purchased from The Jackson Laboratory (Bar Harbor, ME). All animal experiments were approved by the Institutional Animal Care and Use Committee of Nara Medical University. CLP was performed according to the established protocol with minor modifications\(^7\). Briefly, each male KO mouse or wild-type (WT)-C57/BL6 mouse (10-13 weeks of age) was anesthetized with isoflurane and its abdominal wall was opened through a 1-cm midline incision. The exposed cecum was ligated with 4-0 Sofsilk (Covidien, Mansfield, MA), punctured with an 18G needle and gently pressed until a small drop of stool appeared.
The cecum was returned to the peritoneal cavity and the body wall and skin incision were closed with 4-0 Sofsilk. Two hundred microliters of saline were injected into the peritoneal cavity before the final suture to avoid dehydration. In some experiments (n=22 for the Kaplan-Meyer analysis), human VWF (20 μg/mouse), which was purified from cryoprecipitate as previously described8, was injected into KO mice via tail vein just after CLP (indicated as “KO+VWF” in the Figure 1). Excess bleeding was not observed in any of the WT or KO mice during or after CLP operation. A preliminary experiment determined the ligation position of the cecum, a major factor in mouse mortality in the CLP approach7. For induction of mid-grade sepsis that would achieve the survival of approximately half of WT mice, the cecum was ligated at half the distance between distal pole and the base of the cecum. In some experiments (WT, KO or KO+VWF; n=5 each), blood was harvested by cardiac puncture 24 h after CLP. Total white blood cell (WBC) numbers and the WBC differential were counted manually by microscopic examination of a blood sample that was spread in a thin film on a glass slide. Simultaneously, the ligated cecum was removed, fixed, and stained with hematoxylin and eosin (H&E) to evaluate neutrophil recruitment at cecal tissues. In other experiments (WT; n=10, KO; n=13), blood was harvested from the submandibular vein to keep mice alive for subsequent observations. Mouse survival rates were analyzed by the Kaplan-Meyer method and log-rank test. WBC and neutrophil numbers were analyzed with the Bonfferoni test or Student t-test. \(P \) values < 0.05 were considered to be significant.

In the present CLP conditions, the survival rate of KO mice was significantly lower than that of WT (Figure 1A, left panel), but was restored by the administration of human VWF, indicating the crucial involvement of VWF in the pathological process of severe microbial infection (Figure 1A, right panel). Considering the significant decrease in
neutrophils in peripheral blood as well as the reduced neutrophil infiltration in cecal tissue at 24 h after CLP in KO mice (Figure 1B and C), their lower survival rate most likely reflects the defective leukokinetics associated with the absence of VWF. The cause of blood neutrophil decrease in KO mice is not clearly known so far, but could reflect the systemic status that overwhelms the bone marrow potentials, as is seen in severe or fatal sepsis in clinical settings. As a human defense mechanism, therefore, VWF may play a role in leukocyte recruitment at inflammatory loci in response to microbial infection. This scenario is consistent with a recent study demonstrating that the functional regulation of VWF by ADAMTS13 significantly reduced neutrophil accumulation at ischemic sites in a mouse model of myocardial infarction. In the current study, the retrospective analysis of neutrophil dynamics 24 h after CLP clearly indicated that the formation of a walled-off abscess in the peritoneal cavity was an absolute prerequisite for mouse survival, reflecting adequate neutrophil recruitment at the inflammatory focus (Figure 2A and B).

In studies by VWF-KO mouse strategy, it is however necessary to consider that these mice, in addition to the lack of VWF, indicate impaired P-selectin functions due to the loss of intact Weibel-Palade bodies. Consequently, VWF-KO mice could exhibit reduced leukocyte rolling and adhesion on endothelial cell layers in vivo, resulting in the impaired leukocyte recruitment. Thus, it is unclear whether the impaired leukocyte recruitment in KO mice shown in the current study reflects VWF deficiency or the functional defect of endothelial P-selectin. In this regard, Petri et al demonstrated that the function-blocking antibody of VWF significantly decreased neutrophil recruitment in WT-mice, albeit with intact P-selectin function as well as normal leukocyte rolling and adhesion on endothelium. In their study, the blockage of VWF function was shown to significantly reduce the neutrophil extravasation, which could be essentially mediated by
the VWF-platelet glycoprotein Ib interaction. In addition, the lower survival rate (Figure 1A) and impaired leukocyte recruitment (Figure 1B and C) observed in VWF-KO mice were significantly restored by the administration of human VWF in the present study. Although the human VWF reactivity to mouse platelets or ADAMTS13 is uncertain or known to be reduced so far, our results in the human VWF infusion study strongly suggest the critical involvement of VWF in the neutrophil recruitment in inflammatory responses. Thus, VWF likely contributes to adequate leukocyte recruitment at inflammatory loci in response to severe microbial infection possibly by supporting leukocyte extravasation at the microcirculation system where blood flow creates high shear stress\(^1\). Neutrophil accumulation at the inflammatory locus could encapsulate microbes and prevent their systemic dissemination.

In addition to neutrophil recruitment, the beneficial effects of VWF in sepsis may be explained by the recently proposed concept of “immunothrombosis”\(^{11}\). In response to microbial infection, both inflammatory and thrombotic pathways are triggered as innate defense systems. Locally generated thrombi could thereby seal in infectious microbes and detrimental inflammatory mediators at locally inflamed sites by interrupting blood flow. Indeed, recent studies have shown that mice deficient in coagulation factors such as tissue factor, factor V and fibrinogen, exhibited significantly lower survival rates than WT in experimental sepsis\(^{12, 13}\), reflecting impaired thrombin or fibrin generation. In this regard, decreased factor VIII activity due to the VWF absence in VWF-KO mice may partly contribute to the imparted thrombin generation. In addition, defective VWF-mediated platelet aggregation in peripheral capillaries could promote microbial dissemination throughout the body, resulting in the lower survival rate observed in VWF-deficient mice in this sepsis model, in analogy with fibrinogen-deficient mice that may fail to prevent
microbial expansion due to the absence of fibrin-net formation\(^\text{13}\).

Although VWF-mediated thrombotic or inflammatory responses are beneficial for the microbial extinction as discussed above, it is important to consider a possibility that such VWF-dependent reactions may inversely be disadvantageous in septic states. VWF-dependent platelet aggregation may hinder the microcirculatory blood flow that is crucial for the viability of tissues or organs in the context of microbial infection. Indeed, mouse mortality in CLP-induced sepsis critically depends on the cecal ligation position as this determines the extent of lesion ischemia\(^\text{7}\). This might explain the previous discrepant observation by Lerolle et al\(^\text{14}\) that VWF-KO mice significantly survived longer than WT in CLP-induced sepsis. Their CLP protocol, in which the mouse cecum was ligated about 15 mm proximal to the cecal pole (just below the ileo-cecal valve), was much more severe than ours, inducing high-grade sepsis and resulting in 0% survival rate of WT mice within 30 h after their CLP\(^\text{14}\). Although an alternative explanation may also be possible, the beneficial effects of VWF deficiency on microcirculatory blood flow might have far outweighed the disadvantage of defective neutrophil recruitment on mouse survival in their severer CLP situations. Proper balance of VWF function is therefore crucial in the context of severe microbial infection, as it is in the case of bleeding or pathological thrombosis.

Overall, our results point to the critical involvement of VWF in neutrophil recruitment against fatal microbial infection. Although the functional regulation of VWF has recently been proven beneficial in various diseases\(^\text{3-6, 15}\), VWF-dependent inflammatory responses should be carefully considered in the context of these clinical applications.
Authorship

Contribution: Shogo Kasuda performed most of the experiments, data analysis, and interpretation, and drafted the manuscript. Hideto Matsui, Shiro Ono and Ysunori Matsunari helped perform the mouse experiments. Kenji Nishio, Midori Shima and Katsuhiko Hatake provided guidance. Mitsuhiko Sugimoto conceptually designed, directed and interpreted the experiments, and wrote the manuscript.

Disclosure

Conflict-of-interest: All authors declare no competing financial interests.
References

Figure Legends

Figure 1. von Willebrand factor exerts beneficial effects in CLP-induced sepsis via recruitment of neutrophils to inflammatory sites. (A) Kaplan-Meier analysis of survival rates of WT (n = 20: ■) or VWF-KO mice (n = 20: ○) after CLP. WT mice showed 60.0% survival rates 7 days after CLP. Note that KO mice died faster and showed significantly (P = 0.008) lower survival rate (20.0%) than WT mice (left panel). Following bolus administration of human VWF (20 μg/mouse, n = 22: ▲), this impaired survival rate in KO mice improved (to 54.5%) and became nearly indistinguishable from WT mice (see right panel), suggesting the determinant effects of VWF in sepsis. (B) White blood cell and neutrophil numbers 24 h after CLP. These series of experiments (panels B and C), in which the recipient mice were sacrificed at Day 1 (24 h) after CLP (n = 5, each), were performed independently of the long-term observational experiments shown in panel A. Each bar represents mean ± the standard error of the mean (SEM). KO mice demonstrated a significant (*P < 0.05) decrease in neutrophil numbers (lower panel) compared with WT mice, while no significant difference between each group was seen in total WBC numbers (upper panel). Bolus injection of human VWF clearly restored neutrophil numbers to levels comparable to WT (*P < 0.05). (C) Ligated ceca were harvested 24 h after CLP and subjected to H&E staining. Images shown in the upper panel (original magnification, 200×; scale bar 100 μm) are representative of each 3 independent mouse samples. Note that ceca from KO mice showed necrotic tissue with poor neutrophil infiltration, whereas WT mice showed abundant neutrophil accumulation. Neutrophil recruitment was restored by bolus injection of human VWF. Statistical analyses corresponding to the above images are shown in the lower panel; each bar represents the average (+SEM) of 15 areas (each 1mm²; 5 areas were randomly selected from 3 individual mouse samples). These analyses indicate that
neutrophil numbers in ceca tissues are dramatically decreased in VWF-KO mice and are significantly ($P < 0.05$) restored by VWF administration.

Figure 2. Retrospective analysis of neutrophil numbers 24 h after CLP, and the walled-off abscess seen in surviving mice. (A) Comparison of peripheral neutrophil numbers 24 h after CLP in dead mice and surviving mice. Peripheral blood was collected from the submandibular veins of WT or KO mice 24 h after CLP. Survival rates were evaluated after 6 days (see Figure 1A). Neutrophil numbers in the 2 groups (mice that died within 2 days vs. those that survived for 7 days after CLP) were then retrospectively compared in both WT (■; Dead, n = 5; Survived, n = 5) and KO (□; Dead, n = 8; Survived, n = 5) mice. Surviving mice showed significantly ($P < 0.05$) higher neutrophil numbers than dead mice at 24h after CLP, regardless of genetic background. (B) Walled-off abscess formation in surviving mice. Mice that died within 2 days after CLP were dissected and the peritoneal cavity was observed. Survived mice were sacrificed and dissected at day 7. Images displayed are representative of 5 independent mouse samples in each group. (a) No appreciable tumor formation is apparent externally in mice that died within 2 days after CLP. (b) Necrotic cecum at the distal position of ligation site (arrow head) in the peritoneal cavity of a mouse that died within 2 days after CLP. (c) Bulging abdominal wall of a surviving mouse (broken line). (d) Walled-off abscess formation in the peritoneal cavity of a surviving mouse (arrow head). (e) Cut surface of a walled-off abscess, in which pus was encapsulated, from a surviving mouse. Regardless of genetic background or VWF administration, walled-off abscess formation was observed in all surviving mice, whereas such abscess formation was not found in mice that died within 2 days after CLP.
Kasuda et al. Figure 1
Figure 2