Iron deficiency anemia treatment response to oral iron therapy: a pooled analysis of five randomized controlled trials

by Maureen M. Okam, Todd A. Koch, and Minh-Ha Tran

Haematologica 2015 [Epub ahead of print]

Citation: Okam MM, Koch TA, and Tran MH. Iron deficiency anemia treatment response to oral iron therapy: a pooled analysis of five randomized controlled trials. Haematologica. 2015; 100:xxx
doi:10.3324/haematol.2015.129114

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Iron deficiency anemia treatment response to oral iron therapy: a pooled analysis of five randomized controlled trials

Maureen M. Okam¹, Todd A. Koch², and Minh-Ha Tran³

¹Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
²Luitpold Pharmaceuticals, Inc. Norristown, PA, USA
³Departments of Pathology and Internal Medicine, UC Irvine Health School of Medicine, Irvine, CA, USA

Statement of equal authors’ contribution: MO, TK, and MT contributed equally to this work.

Corresponding author:
Maureen Okam, MD, MPH
Division of Hematology
Brigham and Women’s Hospital
75 Francis Street, Midcampus 3
Boston, MA 02115
Phone: 617-732-5048
Fax: 617-732-5706
Email: mokam@bwh.harvard.edu

Key words: iron-deficiency anemia, oral iron, treatment response

Acknowledgments: The authors would like to thank David Morris, PhD for his statistical support and Aesculapius Consulting, Inc. for their editorial support.
Dear Editor:

Oral iron replacement is considered standard frontline therapy for iron-deficiency anemia. The effectiveness of oral iron is compromised by lack of absorption, gastrointestinal perturbation, and non-adherence to treatment estimated to range from 10% at day 14 of therapy to 32% after 2 months. The timing for an optimal switch from oral to intravenous (IV) iron replacement therapy is not well characterized in patient care or treatment algorithms. Currently, there are no markers routinely used in clinical practice to predict response to oral iron. The oral iron challenge test is rarely used since it has not been extensively validated. The primary goal of our study was to identify a practical and sensitive predictor of non-response to oral iron replacement therapy to inform decisions around transitioning to intravenous therapy in patients unlikely to benefit from oral iron. We conducted a secondary analysis of data from five randomized clinical trials (RCT) of oral iron versus (vs) IV ferric carboxymaltose to characterize response to oral iron therapy.

Complete data from the oral arms of five RCTs of iron-deficiency anemia in heavy uterine bleeding (N=1), inflammatory bowel diseases (N=1), post-partum anemia (N=2), and other etiologies (N=1) were combined for assessment of response to oral iron. Inclusion criteria for the trials were similar, most included a hemoglobin (Hb) of ≤10 – 11 g/dL and a ferritin <100 ng/ml. Responders were defined as subjects with a Hb increase of ≥1.0 g/dL at day 14 and non-responders were subjects with a Hb increase of <1.0 g/dL at day 14. The analysis population was the modified intention-to-treat population of subjects randomized to oral iron in each trial who received ≥1 dose of assigned study medication, and had ≥1 post-baseline Hb test. Baseline and outcome data at day 14, day 28, and the interval from days 42 to 56 were evaluated using Fisher’s exact test for categorical variables and one-way analysis of variance for continuous
variables. Sensitivity, specificity, and predictive values were calculated using online tools provided by GraphPad Software Inc., La Jolla, CA, www.graphpad.com. All statistical tests were post hoc, with no adjustment to Type I error for multiple comparisons.

The cohort of 738 subjects was composed of 537 responders and 201 non-responders who participated in one of five RCT (Table 1). Responders, compared to non-responders, were younger (32.9 vs. 39.7 years), had lower BMI (27.9 vs. 31.1 kg/m²) and a lower baseline Hb (9.1 vs. 9.8 g/dL). Treatment compliance with oral iron was reported in four trials and ranged from 83.9% to 98.5% (Table 1). At day 28, the number of patients with a Hb increase ≥1.0 g/dL from baseline was higher for responders than non-responders (100% vs. 46.8%) and at day 42-56 the number of patients with a Hb increase ≥2 g/dL was higher for responders than non-responders (92.9% vs. 27.4%) (Figure 1). Following peak responses in Hb of 1.0 g/dL at day 28 and 2.0 g/dL at day 42-56, further incremental increases in Hb were negligible. The sensitivity, specificity and positive predictive value of a Hb increase ≥1.0 g/dL were 90.1%, 79.3% and 92.9% respectively. In the stratified analysis by IDA etiology, the day 14 treatment response of Hb ≥1.0 g/dL was more robust for subjects with post-partum anemia (95.5%) than subjects with heavy uterine bleeding (56.3%), gastrointestinal (53.5%) and other etiologies (42.9%).

The major finding from this pooled analysis of RCT data in iron-deficiency anemia was that day 14 Hb treatment response to oral iron was an accurate predictor of longer-term and sustained treatment response to continued oral iron supplementation. Day-14 Hb may be a useful tool for clinicians in determining whether and when to transition patients from oral to IV iron. While our findings provide a practical approach to the monitoring of oral iron treatment response in iron-deficiency anemia, we acknowledge that our findings have potential biases inherent in post-hoc analyses. Also, multiple comparisons that were performed in our analyses create the chance
of a Type 1 error in our conclusions. Nonetheless, our findings are consistent with the results of a pivotal RCT that included a 14-day oral iron run-in phase prior to randomization of IDA subjects with various etiologies to additional oral iron vs. IV ferric carboxymaltose.⁹ In this study, 143 of 374 subjects (38.4%) who completed the prospective oral iron run-in study phase achieved Hb ≥1g/dL. Future clinical trials that examine the utility of day-14 Hb in this regard are needed to confirm these findings. Given that iron deficiency and iron-deficiency anemia are recognized common medical conditions, further efforts to characterize medication adherence and treatment effectiveness will optimize and promote global health.¹

Authorship, Funding, Potential conflicts of interest

The contributions of each author were as follows: study concept/design: MO, TK; data analysis: TK; data interpretation: MO, TK, and MT; drafting/revising the manuscript: MO, TK, and MT.

Funding: Luitpold Pharmaceuticals, Inc. supported this study.

Potential conflicts of interest: MO: Participated in a Phase IV trial comparing IV ferric carboxymaltose to other standard of care intravenous iron formulations; MT: None; TK: employee of Luitpold Pharmaceuticals, Inc. All authors have continuous access to the study data.
References

Legend to Table 1.

BID=twice a day; FCM= ferric carboxymaltose; Hb=hemoglobin; IBD= inflammatory bowel disease; IDA= iron deficiency anemia; IV= intravenous; SMC= standard medical care; TID=three times a day.

a) Based on a modified Ganzoni formula. Milligrams of iron administered = pre-pregnancy wt (kg) x (15 – baseline Hb) x 2.4 + [500 if transferrin <20% and ferritin <50 ng/mL].

b) Maximum weekly dose 15 mg/kg, not to exceed 1000 mg/dose, administered intravenously over 15 minutes or less.

c) FCM given as 15 mg/kg up to 750 mg weekly until calculated iron deficit reached.

d) A maximum dose of 1000 mg, or for patients with body weight <66 kg, 15 mg/kg body weight. The total dose administered was split across visits so that a maximal weekly dose of 1000 mg, or if body weight <66 kg, 15 mg/kg body weight was not exceeded; a maximum of 3 infusions was permitted per treatment cycle. A second treatment cycle was permitted if iron parameters indicated IDA between the end of the first cycle and week 9 of the study.
Table 1. Summary of Included Randomized Controlled Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Wyck [5] N=361</td>
<td>Postpartum IDA Mean Age 26 Mean Hb < 9.1 in 80%</td>
<td>FCM [a,b]</td>
<td>Ferrous Sulfate 325 mg TID day 0-42 Compliance: 83.9%</td>
<td>Proportion of patients with Hb increase ≥2.0 g/dL at day 42</td>
</tr>
<tr>
<td>Seid [6] N=291</td>
<td>Postpartum IDA Mean Age 26 Mean Hb 8.9</td>
<td>FCM [a,b]</td>
<td>Ferrous Sulfate 325 mg TID day 0-42 Compliance: 96.2%</td>
<td>Percentage of patients achieving Hb >12.0 g/dL between day 0 and 42</td>
</tr>
<tr>
<td>Van Wyck [4] N=477</td>
<td>Heavy Uterine Bleeding Mean Age 39 Mean Hb 9.4</td>
<td>FCM [a,b]</td>
<td>Ferrous Sulfate 325 mg TID day 0-42 Compliance: 90.3%</td>
<td>Proportion of patients with Hb increase ≥2.0 g/dL at day 42</td>
</tr>
<tr>
<td>Barish [8] N=1446 Multi Dose Trial (708) FCM=343, SMC=360</td>
<td>IDA of various etiologies FCM multi dose trial Mean Age 49/48 Mean Hb 9.6</td>
<td>FCM [a,c]</td>
<td>Standard Medical Care Oral iron, IV iron, or no iron replacement Compliance not calculated for oral iron patients</td>
<td>Primary Outcome: Safety from day 0 to day 42 Secondary Outcome: Various efficacy measures</td>
</tr>
<tr>
<td>Kulnigg [7] N=200</td>
<td>IBD with IDA Mean Age 40/45 Mean Hb 8.8</td>
<td>FCM [a, d]</td>
<td>Ferrous sulfate (100 mg elemental iron) BID for 12 weeks Compliance: 98.5%</td>
<td>Noninferiority in improving Hb to week 12</td>
</tr>
</tbody>
</table>
Legend to Figure 1.

Figure 1. Subsequent Hemoglobin Trend According to 14-day Hemoglobin Response. Responders (those with a \(\geq 1 \) g/dL rise in hemoglobin by day 14) were more likely to manifest durable and more robust increments than non-responders (those with <1 g/dL rise in hemoglobin by day 14).