Identification of a new potential mechanism responsible of severe bleeding in myeloma: immunoglobulins bind the heparin binding domain of antithrombin activating this endogenous anticoagulant

by Irene Martínez-Martínez, Jose Ramón González-Porras, Maria José Cebeira, Felipe de Arriba, Salvador Espín, Nataliya Bohdan, Fernando José Corrales, Javier Corral, and Vicente Vicente

Haematologica 2016 [Epub ahead of print]

Citation: Martínez-Martínez I, González-Porras JR, Cebeira MJ, de Arriba F, Espín S, Bohdan N, Corrales FJ, Corral J, and Vicente V. Identification of a new potential mechanism responsible of severe bleeding in myeloma: immunoglobulins bind the heparin binding domain of antithrombin activating this endogenous anticoagulant. Haematologica. 2016; 101:xxx
doi:10.3324/haematol.2016.144873

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Title: Identification of a new potential mechanism responsible of severe bleeding in myeloma: immunoglobulins bind the heparin binding domain of antithrombin activating this endogenous anticoagulant.

Running head: Immunoglobulins activate antithrombin

Irene Martínez-Martínez1,2, José Ramón González-Porras3, María José Cebeira4, Felipe de Arriba1, Salvador Espín1, Nataliya Bohdan1, Fernando José Corrales5, Javier Corral1,2, Vicente Vicente1,2

1Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia.

2Grupo de investigación CB15/00055 del Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII) Madrid.

3Hospital Universitario de Salamanca, Spain

4Hospital Clínico de Valladolid, Spain

5Center for Applied Medical Research (CIMA), University of Navarra, Pamplona. Spain.

Correspondence:
Dr. Javier Corral
Centro Regional de Hemodonación
Avenida Ronda de Garay s/n
30.003 Murcia, Spain
E-mail: javier.corral@carm.es
Bleeding is a relatively common complication in patients with multiple myeloma. Different factors have been involved, like heparin-like anticoagulants, although the underlying mechanism remains obscure. The identification of a patient with a quiescent multiple myeloma IgG-\(\lambda\) that suffered severe bleeding event controlled by rFVIIa and had prolonged thrombin time corrected by protamine sulfate gave the opportunity to evaluate whether antithrombin might be the target of these heparin-like anticoagulants. Antithrombin binding proteins from the patient were purified by fast liquid chromatography. The main antithrombin-bound protein of this patient was the paraprotein as demonstrated by Western blot and proteomic analysis. Intrinsic fluorescence and thrombin inhibition assays showed that the purified IgG of this patient bound antithrombin with \(K_D\) values in the picomolar range, activated antithrombin and increased the inhibition of thrombin as heparin. Interestingly, IgG purified from healthy controls also bound and activated antithrombin although with lower potency. In conclusion, we have identified a new element disturbing the thrombin-antithrombin axis. IgGs bind the heparin binding domain of antithrombin causing a similar activation to that provoked by heparin. This effect may have haemostatic consequences in patients with myeloma due to the high titer of paraprotein and potentially by differences in the IgG, which may contribute to the risk of bleeding of these patients.
The high titer of circulating monoclonal proteins present in patients with multiple myeloma and related plasma cell disorders are considered to play a relevant role in the hemostatic abnormalities frequently detected in these patients. The most common coagulation abnormalities in patients with plasma cell dyscrasias, prolonged thrombin time and reptilase time, are almost always asymptomatic and are explained by the monoclonal protein interference with fibrin clot formation.1 Paraproteins may also target other hemostatic factors, such as platelet glycoprotein IIIa or FVIII, in all cases with severe bleeding consequences.2 Thrombin has also been affected in several cases with multiple myeloma who suffered from severe bleeding through two mechanisms: direct inhibitors of thrombin, and circulating heparin-like anticoagulants.2-6 Although the pathophysiology of the hemostatic disorders caused by heparin-like anticoagulants remains obscure, both \textit{in vitro} and \textit{in vivo} treatment with protamine infusions have been effective.1

Since antithrombin is a key hemostatic element and the target of heparin, which acts as a cofactor leading to its conformational activation, we speculated that the paraprotein of patients with plasma cell disorders might also target this anticoagulant. This hypothesis was evaluated in a 73-years old woman with monoclonal gammopathy of undetermined significance that progressed to a quiescent multiple myeloma IgG-\(\lambda\) (2.5 g/L).

Since the diagnosis, the patient had multiple bleeding events in arms and legs appearing spontaneously or after mild traumatisms. When the disease progressed, she developed spontaneously an extensive hematoma in the arm. The patient was treated with a dose of recombinant FVIIa (70 \(\mu\)g/Kg) and prednisone (20 mg/24h), which controlled the bleeding. Then, six cycles of VMP (Bortezomib, Melphalan, and low dose of Prednisone -60 mg-) were administered, reaching only a partial response with mild
reduction of the monoclonal component (1.7 g/L). No further bleeding events were reported.

Platelet function assay (PFA) studies, coagulation assays and analysis of coagulation factors were done but only revealed a prolonged thrombin time (> 180s) and aPTT (75-97 sec, ratio 2.59-3.13) at all tested time points, including the moment of the severe hemorrhage and after treatment. Interestingly, the thrombin time was corrected by protamine in vitro (Table 1), and the reptilase time was always normal. The neutralization of heparin-induced bleeding by protamine sulfate supports the presence of a molecule with a heparin-like effect in this patient. Aiming to identify this factor and to clarify the mechanism underlying the bleeding event of this patient, plasma proteins able to bind antithrombin were purified following the strategy shown in Figure 1A. This procedure revealed a main protein that was recognized by an anti-IgG polyclonal antibody (Figure 1). After a last protein purification step of anionic exchange, mass spectrometry proteomic analysis verified that the protein purified was an IgG isotype γ1. The same procedure was used in plasma from healthy subjects, rendering IgG of similar mobility than the control IgG (Figure 1). Comparison of the electrophoretic mobility in SDS gels under reducing conditions revealed that the antithrombin-bound IgG purified from the patient had less mobility than control IgG (Figure 1). No glycosylation abnormalities were detected in this protein (Figure 1) and proteomic analysis of available peptides did not identify mutations or aberrant post-translational modifications (Data not shown).

The anticoagulant effect of the IgG purified from the patient’s plasma was assayed by evaluating thrombin and FXa inhibition. As shown in figure 2, this IgG was able to activate antithrombin accelerating the interaction with thrombin and FXa slightly slower than unfractionated heparin or low molecular weight heparin, respectively. Interestingly,
although with reduced effect, control IgG also had anti-thrombin activity (Figure 2A & 2B). The acceleration of the inhibition of both FXa and thrombin suggests that the mechanism of inhibition happens by the allosteric activation of antithrombin, although the inhibition of thrombin is favored (Figure 2A). The acceleration of the inhibition of these targets is caused by the IgG since neutralization is provoked by protamine sulfate (Figure 2C). To confirm the activation of antithrombin suggested by the generation of thrombin-antithrombin or FXa-complexes, a study of the intrinsic fluorescence of antithrombin was performed. It is well known that antithrombin is activated after binding to heparin, which increases the emission of fluorescence when antithrombin is excited at 280 nm. Our results showed that the IgG component purified from the patient was able to activate antithrombin as heparin did (Figure 2). This activation was achieved with a very low concentration, which indicated a high affinity interaction between both proteins. The change in intrinsic fluorescence of antithrombin (50 nM) upon titration of the IgG was monitored at 340 nm on a Cary Eclipse spectrofluorometer. The K_D value was in the picomolar range (23.7 ± 3.8 pM), which is smaller than the the K_D for the pentasaccharide (0.2 ± 0.07 nM), although comparison of K_D values of a large protein (purified IgG) and an oligosaccharide (pensasaccharide) is difficult. According to functional assays, also control IgG and IgG purified with the same procedure from healthy subjects activated antithrombin, although the K_D value was ~400-fold higher than that observed for the IgG of the patient and pentasaccharide (14.5±2.1 nM for control IgG and 10.0±0.1 nM for antithrombin-bound IgG from healthy subjects). The IgG-mediated activation of antithrombin was also evaluated by measuring the intrinsic fluorescence emission upon titration on a variant antithrombin (Antithrombin Toyama, p.Arg79Cys) with reduced heparin affinity. As expected,
addition of control IgG, the IgG purified from the patient, or heparin did not provoke any measurable fluoresce emission enhancement on this mutant (data not shown).

An exquisite control of thrombin is warranted in order to prevent excessive, spontaneous or mislocalized thrombin generation. The main endogenous inhibitor of thrombin is antithrombin. Thus, even minor modifications of the thrombin-antithrombin axis might have opposite pathological consequences. Thus, congenital antithrombin deficiency caused by mutations or deletions in \textit{SERPINC1}, the gene encoding antithrombin, significantly increases the risk of primary and recurrent thrombosis. Actually, congenital antithrombin deficiency was the first thrombophilic factor identified and so far the strongest. Similarly, two mutations in the prothrombin gene disrupt the sodium-binding region, which is crucial for a correct interaction of thrombin with antithrombin. The variant prothrombins are highly resistant to antithrombin inhibition, ensuing a prolonged procoagulant activity and susceptibility to thrombosis.9 On the other side, a point mutation (p.Met358Arg) in \textit{SERPINA1}, the gene encoding other serpin with no anticoagulant role, \(\alpha_1\)-antitrypsin, generates a variant (\(\alpha_1\)-antitrypsin Pittsburgh) with a greatly impaired anti-elastase activity but significantly increased antithrombin activity, which provoked bleeding disorders.10 Finally, activation of antithrombin by different compounds acting as cofactors (including sulfated small organic ligands such as lignins and flavonoids, heparin and heparin-like molecules) significantly increase the risk of bleeding.11

Actually, the high reactivity of the heparin binding site of antithrombin allows the binding of different molecules through electrostatic interactions. However, not all interactions cause activation of antithrombin.9,12 This study identifies a new molecule able to bind the heparin binding domain of antithrombin with functional consequences acting as an heparin-like factor. The IgG from a patient with multiple myeloma, who
suffered from severe bleeding, had a heparin-like activity. The binding of this IgG to the heparin binding domain of antithrombin activates the serpin similarly than heparin, explaining the prolonged thrombin time and bleeding diathesis of this patient. Accordingly, protamine inhibits the effect of the paraprotein. Interestingly, our study also demonstrated that all IgG are able to bind antithrombin with milder activating functions. Therefore, increased levels of IgGs might potentially increase the risk of bleeding. It is possible that particular features of the monoclonal IgG might exacerbate this anticoagulant effect, as in the case of the patient suffering bleeding diathesis. Further studies are required to verify this hypothesis, and to find the potential differences that might have prognostic relevance in patients with myeloma and related plasma cell disorders.

Finally, we can’t forget that the interference on the thrombin-antithrombin axis may also affect the risk of thrombosis. The binding of certain IgGs to the heparin binding domain of antithrombin might impair the activation of antithrombin by physiological cofactors when it is required, thus also contributing to the risk of thrombosis, which is also a relatively frequent complication in these disorders. Purification following our procedure and analysis of the IgG of patients with myeloma and related plasma cell disorders who develop thrombosis may help to answer this question.
References

Table 1. Thrombin time assay after *in vitro* addition of protamine sulfate to the plasma of the patient that suffered bleeding diathesis.

<table>
<thead>
<tr>
<th>Protamine sulfate (mg/mL)</th>
<th>Thrombin time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>>600</td>
</tr>
<tr>
<td>10</td>
<td>187</td>
</tr>
<tr>
<td>50</td>
<td>76</td>
</tr>
<tr>
<td>100</td>
<td>22</td>
</tr>
<tr>
<td>200</td>
<td>21</td>
</tr>
</tbody>
</table>
Legends to figures

Figure 1. IgG purification. A) Purification strategy of antithrombin-binding IgG from the plasma of the patient with multiple myeloma and healthy subjects. Recombinant wild type antithrombin was generated with a 6-histidines tag at the C-terminal. Plasma from a patient with multiple myeloma who developed a severe coaglopathy and healthy controls was loaded into a Ni2+-histidine-antithrombin column. After extensive washing, those components in the plasma with ability to bind to antithrombin were eluted. After dialysis, eluted products were further purified using a HiTrap Protein G column. B) Electrophoretic mobility (8% SDS-PAGE under reducing conditions) of purified antithrombin-binding IgGs from the patient with multiple myeloma that suffered bleeding diathesis and a healthy control. As control, IgG purified from healthy subjects (Flevogamma IV, Grifols) were also loaded (Control IgG). Detection of proteins was done by silver staining. C) Western blot using human anti-IgG polyclonal antibody after treatment of purified proteins with N-Glycosidase F.

Figure 2. Activation of antithrombin by IgGs. A) Thrombin and FXa inhibitory function of antithrombin in absence and presence of unfractionated heparin (UFH) or low molecular weight heparin (LMWH), control IgG or IgG purified from the patient with multiple myeloma that suffered bleeding diathesis. Thrombin and FXa activity were determined by a chromogenic substrate assay. The figure summarizes the results obtained from two independent experiments performed in triplicate. B) Detection of thrombin-antithrombin (T-AT) and (FXa-AT) complexes by 8% SDS-PAGE under reducing conditions and Western blot with human anti-antithrombin polyclonal antibody, representative of two independent experiments. C) Neutralization of IgG by Protamine Sulfate. Left panel shows the IgG purification from plasma of the patient. Plasma was loaded onto the Ni2+-Antithrombin column directly or after incubation with
Protamine Sulfate (0.3 mg/ml). Samples were run in an 8% SDS-PAGE under reducing conditions and stained with silver. As control, IgG purified from healthy subjects (Flevogamma IV, Grifols) were also loaded (Control IgG). Right panel displays the anti-FIIa activity of AT and neutralization by protamine sulfate. AT was incubated with unfractionated heparin (UFH), Patient IgG or Patient IgG purified from plasma incubated with Protamine Sulfate (Patient IgG-PS). Neutralization of the activation of AT with Protamine Sulfate (PS) was carried out by incubation with UFH, Patient IgG or Patient IgG-PS previously to the reaction with Thrombin. D) Intrinsic fluorescence emission upon antithrombin activation. The increase in intrinsic fluorescence of antithrombin (50 nM) upon addition of the purified IgG from multiple myeloma patient and control IgG (200 nM) was monitored from 290 to 340 nm on a PerkinElmer Life Sciences 50B spectrofluorometer, with excitation at 280 nm and using bandwidths of 2.5 nm for both excitation and emission. The experiment was carried out at room temperature under physiological ionic strength ($I = 0.15$) in 20 mm Na$_2$HPO$_4$, 100 mm NaCl, 0.1 mm EDTA, 0.1% polyethylene glycol 8000, pH 7.4. A same spectrum was also done with pentasacharide (10 µM) in order to establish a comparison. The intrinsic fluorescence of the IgG purified from the patient is also shown. Experiments were performed in duplicates.
A

AT-His

Ni2+ Column

Patient’s plasma

3 M NaCl, dialysis

HiTrap Protein G column

0.1 M Glycine pH 2.7, dialysis

Immunoglobulin G with antithrombin affinity

B

Healthy control IgG Control IgG Patient IgG

C

Control IgG Patient IgG + N-Glycosidase F

Control IgG Patient IgG