Absence of CALR mutations in JAK2 negative polycythemia

by Aurélie Chauveau, Olivier Nibourel, Sylvie Tondeur, Damien Luque Paz, Olivier Mansier, Franciane Paul, Mathieu Wemeau, Claude Preudhomme, Eric Lippert, and Valérie Ugo

Haematologica 2016 [Epub ahead of print]

doi:10.3324/haematol.2016.154799

Publisher’s Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Absence of CALR mutations in JAK2-negative polycythaemia

Aurélie Chauveau, Olivier Nibourel2, Sylvie Tondeur, Damien Luque Paz4, Olivier Mansier5, Franciane Paul6, Mathieu Wemeau7, Claude Preudhomme2, Eric Lippert1, Valérie Ugo4
On behalf of the French Intergroup of Myeloproliferative Neoplasms (FIM)

1- CHRU Brest, Service d’Hématologie Biologique
2- CHRU Lille, Laboratoire d’Hématologie
3- CHU Saint Etienne, Laboratoire d’Hématologie
4- CHU Angers, Laboratoire d’Hématologie
5- CHU Bordeaux, Service d’Hématologie Biologique
6- CHU Montpellier, Laboratoire d’Hématologie
7- CHRU Lille, Service des Maladies du Sang

Keywords: Polycythemia vera, CALR, JAK2 V617F, myeloproliferative neoplasm

Words: 1141

Corresponding author:
Prof Valerie Ugo, MD, PhD
Laboratoire d’Hématologie
Institut de Biologie en Santé
CHU ANGERS
4 Rue Larrey
49933 ANGERS Cedex 9
France
Tel: 0033241355353
Fax: 0033241355599
Email: valerie.ugo@univ-angers.fr
Polycythemia vera (PV) is a myeloproliferative neoplasm (MPN) responsible for increased haematopoiesis, mainly affecting the erythroid lineage. The diagnosis of PV has been tremendously simplified by the description of JAK2 mutations, affecting the canonical V617 in exon 14 in more than 95% of cases, or the exon 12 in the majority of JAK2V617F negative patients. In addition to finding a JAK2 mutation in patients with increased haemoglobin/haematocrit levels, the WHO, in its 2008 classification, put forward additional “minor” criteria, such as low serum erythropoietin (EPO) levels, a growth of endogenous (EPO-independent) erythroid colonies and specific bone marrow histologic features of MPN (1). In the most recent classification (2), bone marrow biopsy has become a major criterion, whereas only subnormal EPO levels remain a minor criterion. Even though JAK2 mutations are found in the vast majority of PV patients, “true” PV has been described in patients lacking mutations in the exon 12 or 14 of JAK2, raising the question of other mutations causing this phenotype. For example, among these possible mutations, abnormalities in the adaptor protein LNK have been reported in JAK2-unmutated patients (3).

In 2013, a novel series of mutations affecting the Calreticulin (CALR) gene have been described in JAK2-unmutated essential thrombocythemia and primary myelofibrosis (4, 5). CALR mutations are found in the exon 9 and!組 various combinations of deletions and insertions that always result in a one base-pair frameshift. This constant frameshift changes the C-terminus of the protein that becomes basic, whereas it is very acidic in the wild type protein. Even though no CALR mutations had been initially described in PV, the fact that this mutation activated the JAK2/STAT5 pathway led some authors to investigate whether CALR mutations can be found in PV patients lacking JAK2 mutations. Two patients with erythrocytosis harboring CALR mutations have been described (6), which calls into question the interest of systematically screening for CALR mutations in patients with unexplained erythrocytosis.
First, we screened a cohort of 42 patients gathered nationally on the basis of a PV diagnosis, but without JAK2 mutations, either in exon 12 or 14 (“JAK2NEG cohort”). All patients gave informed consent for the use of remaining nucleic acids for research purposes after the completion of diagnostic procedures. CALR exon 9 mutations were screened by fragment length analysis according to procedures described by Klampfl et al. (5) and/or to Mansier et al. (7).

Of these 42 PV patients, a CALR mutation (type 1, c.1092_1143del; p.Leu637Trpfs*46) was found in one case. The patient was a 71-year-old woman with mild thrombocytosis (573 G/L), for whom a systematic isotopic evaluation had revealed an increased red cell mass (130%). The white blood cell count was normal (8.5 G/L) and she had no splenomegaly. The diagnostic workup included search for mutations in JAK2 (exon 12 and 14), MPL, BCR-ABL1 and a karyotype: all were normal. The bone marrow biopsy was suggestive of MPN, showing mainly hyperplasia of the megakaryocytic lineage. An in vitro assay of progenitors revealed an EPO-independent growth of small erythroid colonies. This suggested a diagnosis of PV, even though the haemoglobin level was within the normal range (13.5 g/dL). In view of the surprising finding of a CALR mutation, clinical and biological diagnosis criteria have been critically reviewed. A central re-evaluation of the bone marrow histology confirmed the isolated megakaryocytic hyperplasia that was more in favour of a diagnosis of ET rather than PV. Moreover, chronic hypoxia (pO2 67 mmHg, oxygen saturation of 94%) had been overlooked. In light of these novel elements, the patient was re-classified as having essential thrombocythemia associated with a secondary erythrocytosis due to subnormal oxygen saturation.

To strengthen this study, the CALR mutation screening was then extended to another cohort of 536 patients diagnosed with polycythaemia from three laboratories. Only cases where no typical causes of secondary erythrocytosis and no JAK2 mutations (exon 12, exon 14) had
been identified were studied. From this large cohort, only one additional *CALR* mutation was found. The 67-year-old patient had haematocrits of 53-56%, demonstrated but modest increased red cell mass (135%), no clinical sign of PV, no endogenous erythroid colony growth, and a serum EPO level of 10 mIU/mL. The patient’s body mass index was 34.7. The bone marrow biopsy only revealed increased erythroid lineage, without alteration of the other lineages. A thorough search for the causes of secondary erythrocytosis (abdominal ultrasound, blood gas, P50 measurement, methaemoglobinaemia, haemoglobin electrophoresis, overnight sleep monitoring) remained negative. A type 1 *CALR* mutation with low allele burden (estimated at 5%) was found in peripheral leukocyte DNA as well as 2 out of 12 EPO-stimulated erythroid colonies.

Overall, of 578 patients with JAK2 negative unexplained erythrocytosis, two presented a *CALR* exon 9 mutation: one with evidence of essential thrombocythaemia and slightly increased red cell mass (without increased haemoglobin) probably due to suboptimal haemoglobin oxygen saturation, and one with an idiopathic erythrocytosis, no elements in favour of a MPN (no endogenous erythroid colony growth, normal EPO levels, no sign of myeloproliferation on the bone marrow histology) and a low *CALR* mutant burden. In this last case, it is difficult to attribute the responsibility of the increased haemoglobin to the *CALR* mutation. Rather, one may postulate that it is a chance association of erythrocytosis in an obese man and the presence of an asymptomatic, randomly acquired mutation has been described to occur quite frequently with age (8). Of note: *CALR* mutant allelic burden increased over time up to 20%, without modification of the clinical presentation.

Two groups had previously reported three cases of polycythaemic patients with *CALR* mutations: Xu et al. described a 3bp deletion of *CALR* (c.1095_1097del) which is probably a polymorphism (9). Indeed, this mutation does not generate the typical frameshift observed in *CALR* mutations, and several such cases have been identified as non-pathogenic genetic
variants (10). Regarding the other two published cases (6), WHO criteria for PV were not complete. In the absence of JAK2 mutations, two of the three minor criteria are required for a diagnosis of PV according to the 2008 classification, or a biopsy and a low EPO level according to the 2016 classification (absence of low erythropoietin levels, no endogenous erythroid colony investigation for the first patient, absence of endogenous erythroid colony formation and no bone marrow biopsy investigation for the second one). It is therefore possible that these patients did not suffer from a “true” polycythaemia vera. Besides, CALR mutants have recently been shown to interact specifically with MPL, explaining the major involvement of these mutations in ET and PMF, which strongly rely on abnormal MPL signalling. Moreover, the introduction of CALR mutants in murine haematopoietic cells induces thrombocytosis without erythrocytosis (11-14). For these reasons, and in view of our results indicating that \textit{CALR} mutations were not found in a large cohort of patients with unexplained polycythaemia, we argue that screening for \textit{CALR} mutations in polycythaemic patients is not useful.

\textbf{Acknowledgments}

The authors thank the biobanks of Angers, Bordeaux, Brest and Lille for providing high quality samples and the ‘Delegation à la Recherche Clinique’ of the CHU Angers for technical help.
References