CLLU1 expression has prognostic value in chronic lymphocytic leukemia after first-line therapy in younger patients and in those with mutated *IGHV* genes

David Gonzalez, Monica Else, Dorte Wren, Monica Usai, Anne Mette Buhl, Anton Parker, David Oscier, Gareth Morgan, and Daniel Catovsky

1 Haemato-Oncology Research Unit, Division of Molecular Pathology, The Institute of Cancer Research, London, UK; 2 Molecular Diagnostics, The Royal Marsden NHS Foundation Trust, London, UK; 3 The Leukemia Laboratory, Department of Hematology, Rigshospitalet and University of Copenhagen, Denmark, and 4 Department of Haematology, Royal Bournemouth Hospital, UK

© 2013 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2012.070201

Online Supplementary Table S1. Availability of **CLLU1** expression data by patient/disease characteristics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total</th>
<th>CLLU1 expression data available</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes n. (%)</td>
<td>No n. (%)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>204</td>
<td>137 (27)</td>
<td>67 (26)</td>
</tr>
<tr>
<td>Male</td>
<td>573</td>
<td>378 (73)</td>
<td>195 (74)</td>
</tr>
<tr>
<td>Treatment allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorambucil</td>
<td>387</td>
<td>246 (48)</td>
<td>141 (54)</td>
</tr>
<tr>
<td>Fludarabine</td>
<td>194</td>
<td>128 (25)</td>
<td>66 (25)</td>
</tr>
<tr>
<td>Fludarabine + Cyclophosphamide</td>
<td>196</td>
<td>141 (27)</td>
<td>55 (21)</td>
</tr>
<tr>
<td>Age group (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>255</td>
<td>160 (31)</td>
<td>95 (36)</td>
</tr>
<tr>
<td>60-69</td>
<td>288</td>
<td>199 (39)</td>
<td>89 (34)</td>
</tr>
<tr>
<td>70+</td>
<td>234</td>
<td>156 (30)</td>
<td>78 (30)</td>
</tr>
<tr>
<td>Binet stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A progressive</td>
<td>191</td>
<td>132 (26)</td>
<td>59 (22)</td>
</tr>
<tr>
<td>B</td>
<td>352</td>
<td>227 (44)</td>
<td>125 (48)</td>
</tr>
<tr>
<td>C</td>
<td>234</td>
<td>156 (30)</td>
<td>78 (30)</td>
</tr>
<tr>
<td>ß microglobulin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><4 mg/L</td>
<td>309</td>
<td>190 (53)</td>
<td>119 (60)</td>
</tr>
<tr>
<td>≥4 mg/L</td>
<td>247</td>
<td>168 (47)</td>
<td>79 (40)</td>
</tr>
<tr>
<td>IGHV gene (98% cut off)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmutated</td>
<td>327</td>
<td>290 (62)</td>
<td>37 (57)</td>
</tr>
<tr>
<td>Mutated</td>
<td>206</td>
<td>178 (38)</td>
<td>28 (43)</td>
</tr>
<tr>
<td>TP53 deletion (10% cut off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>532</td>
<td>437 (92)</td>
<td>95 (92)</td>
</tr>
<tr>
<td>Yes</td>
<td>48</td>
<td>40 (8)</td>
<td>8 (8)</td>
</tr>
<tr>
<td>11q deletion (5% cut off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>463</td>
<td>376 (79)</td>
<td>87 (82)</td>
</tr>
<tr>
<td>Yes</td>
<td>116</td>
<td>97 (21)</td>
<td>19 (18)</td>
</tr>
<tr>
<td>Trisomy 12 (3% cut off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>488</td>
<td>404 (85)</td>
<td>84 (79)</td>
</tr>
<tr>
<td>Yes</td>
<td>91</td>
<td>69 (15)</td>
<td>22 (21)</td>
</tr>
<tr>
<td>CD38 (7% cut off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>201</td>
<td>157 (36)</td>
<td>44 (43)</td>
</tr>
<tr>
<td>Yes</td>
<td>334</td>
<td>275 (64)</td>
<td>59 (57)</td>
</tr>
<tr>
<td>ZAP-70 (10% cut off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>242</td>
<td>220 (51)</td>
<td>22 (47)</td>
</tr>
<tr>
<td>Yes</td>
<td>236</td>
<td>211 (49)</td>
<td>25 (53)</td>
</tr>
<tr>
<td>13q deletion (5% cut off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>233</td>
<td>193 (41)</td>
<td>40 (38)</td>
</tr>
<tr>
<td>Yes</td>
<td>346</td>
<td>280 (59)</td>
<td>66 (62)</td>
</tr>
</tbody>
</table>