Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes

Xiang Li,1,2 Feng Xu,1,3,4 ChunKang Chang,3,4 John Byon,5 Thalia Papayannopoulou,6 H. Joachim Deeg,1,5 and A. Mario Marcondes1

1Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; 2Medical School, Jiangnan University, Wuxi, People’s Republic of China; 3Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; 4The 6th People’s Hospital affiliated to Shanghai Jiaotong University, Shanghai, People’s Republic of China; and 5Department of Medicine, University of Washington, Seattle, WA, USA

©2013 Ferrata Storti Foundation. This is an open-access paper. Haematologica 2013;98. doi:10.3324/haematol.2012.071753

Online Supplementary Figure S1. TWIST-1 and miR10a/b levels and their effects on apoptosis and proliferation.

(A) MiR10a and (B) miR10b levels in CD34+ marrow cells from healthy donors and patients with MDS, as determined by NanoString array, normalized to 7 internal controls (see Design and Methods). Relative expression of miR10a was higher in patients with low grade (P=0.14) and advanced MDS (P=0.16) than in healthy donors, although this was without statistical significance. Relative expression of miR10b was statistically significantly higher in patients with low grade (P=0.05) and showed a strong trend for advanced MDS (P=0.08) in comparison to healthy donors (mean±SEM, Student’s t-test for comparison of continuous variables) (C) Western blot shows levels of TWIST-1 in KG1a cells with or without knockdown, using a TWIST-1-specific construct (shRNA TWIST-1). ShCTRL indicates a scrambled control construct.

(D) Apoptosis rate in PL-21 cells with miR10a/b knockdown (PL-21 miR10a/b KD) in comparison to unmodified cells (wt) and cells transfect-ed with a control vector (PL-21 miRCTRL). Cells were co-cultured with H5 cell line and treated with TNFα (5-25 ng/mL), IKK inhibitor (300 nM) or both. The rate of early stage apoptosis (Annexin V+ PI−) is shown. (mean±SEM of 3 experiments; Student’s t-test for comparison of continuous variables).

(E) Effect of miR10a/b knockdown on proliferation (as determined by BrdU uptake) and (F) cell cycle progression of KG1a cells as determined by BrdU uptake and cell cycle phase (G0/G1, S, G2/M). (mean±SEM of 3 experiments; Student’s t-test for comparison of continuous variables).
Online Supplementary Figure S2. TWIST-1-dependent miR10a/b expression in PL-21 cells impacts downstream targets of NF-κB. (A) Activation of NF-κB in PL-21 miR10a/b KD and PL-21 TWIST-1-KD cells (shRNA TWIST-1) as shown by Electrophoretic Mobility Shift Assay (EMSA); (B) Nuclear protein lysates from PL-21 wt, miRCTRL and miR10a/b KD cells, separated on 4%–12% Bis-Tris gels and immunoblotted with antibodies against p65 total and phosphor-p65. Histone H2 served as loading control. (1 of 2 similar experiments); (C) Protein lysates from PL-21 wt, miRCTRL and miR10a/b KD cells, were separated on 4-12% Bis-Tris gels and immunoblotted with antibodies against TAK-1, pIkB-α, p65 total, phosphor- p65, p53, p53-ser46, BID and Bax, respectively; β-actin served as loading control.