Distributions of the patients’ characteristics

The three characteristics: (i) average number of annual joint bleeds, (ii) age at first bleed, and (iii) expected lifetime of a simulated patient were drawn from their corresponding probability distributions. The first two distributions were derived from the Dutch patient dataset and were estimated using the distribution-fitting tool in Matlab™. The life expectancy was assumed to follow the normal Dutch life expectancy distribution, i.e. a Weibull(α = 8; β = 80) distribution.

Average number of annual joint bleeds

The data showed that young children had a lower average number of annual joint bleeds than older children and adults. Therefore, a distinction was made at the age of 7 years. The distribution of the average number of joint bleeds for children younger than 7 years was assumed to follow an Exponential(λ = 3.75) distribution. An Exponential(λ = 5) distribution was chosen to fit the average number of joint bleeds for patients older than 7 years.

Age at first joint bleed

The best fitting distribution of the age at first joint bleed was assumed to be a Weibull(α = 1.71; β = 2.45) distribution.

Annual number of joint bleeds

The model allows the annual number of joint bleeds to vary per year. Again, the distributions were based on the Dutch dataset. We observed a positive correlation between the number of bleeds per year and the average number of joint bleeds of a patient. The higher the average number of joint bleeds of a patient, the higher the variance. This is illustrated by Online Supplementary Figure S1, where the maximum and minimum

References

Online Supplementary Figure S1. Minimum and maximum number of annual joint bleeds. For each patient the average annual number of joint bleeds and the associated minimum and maximum number of annual joint bleeds are illustrated. Linear trend lines are added for the minimum numbers and for the maximum numbers.