

Analysis of V_H genes in marginal zone lymphoma reveals marked heterogeneity between splenic and nodal tumors and suggests the existence of clonal selection

Alexandra Traverse-Glehen Frédéric Davi Elsa Ben Simon Evens Cellet Baughu	Background and Objectives. To clarify the relationship between splenic (SMZL) and nodal marginal zone (NMZL) lymphomas, we analyzed immunoglobulin variable heavy chain (V_H) gene usage and mutation patterns in these tumors.							
Pascale Felman	Design and Methods. V _H genes were cloned ples (35 SMZL and 14 NMZL).	d and sequenced from 49 lymphoma sam-						
Luche Baseggo Sophie Gazzo Catherine Thieblemont Carole Charlot Bertrand Coiffier Françoise Berger Gilles Salles	Results. A biased usage of V _H gene was found with overrepresentation of V _H 1 in SMZL cases (13/35) and V _H 4 in NMZL cases (7/14). Evidence for antigen driven mutations was identified in 8 SMZL and 4 NMZL cases. Three cases out of 18 with clones analyzed from spleen and peripheral blood demonstrated intra-clonal diversity, with evidence of clonal selection in one case, indicating the possibility of antigen-driven clonal expansion. Eleven SMZL cases (31%) but only 2 NMZL (14%) cases were unmutated. No differences in clinical outcome and overall survival were found between the unmutated and mutated cases.							
	Interpretations and Conclusions. The pattern of somatic mutation and the V _H gene seg- ment usage appear to differ between SMZL and NMZL, suggesting that these are dis- tinct pathological entities. Moreover, a biased usage of certain sequences suggests that tumor cells in SMZL may be subjected to antigen selection.							
	Key words: somatic mutation, marginal zone, B cell lymphoma, immunoglobulin							
	Haematologica 2005; 90:470-478							
	©2005 Ferrata Storti Foundation							
From the Equipe Accueil 3737 "Pathologie des Cellules Lymphoïdes", Université Claude Bernard, France (AT-G, EBS, EC-B, PF, LB, CT, CC, BC, FB, GS): Service d'Anatomie Pathologique, Centre Hospitalier Lyon-Sud, France (AT-G, FB); Service d'Hématologie Biologique, Hôpital de la Pitié-Salpétrière, Paris, France (FD); Laboratoire d'Hématologie, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France (EC-B, PF, LB); Service d'Hématologie, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France (CT, GS).	The germinal center reaction in T-cell -dependent antibody responses is crucial for the generation of B-cell memory and plays a critical role in B-cell lymphomagenesis. During this process, random mutations are introduced into immunoglobulin V $_{\rm H}$ genes to increase the antibody molecule's affinity and to further diversify the B-cell repertoire. Despite the possibility of a somatic hypermutation pathway outside of the germinal center, somatically mutated variable-region genes are currently considered a faithful marker	phoma, splenic marginal zone B-cell lym- phoma (SMZL) with or without villous lymphocytes and nodal marginal zone B- cell lymphoma (NMZL) with or without monocytoid B-cells. These three lym- phoma entities may have a common origin in the marginal B-cell compartment of the lymphoid organs. However, the precise cell of origin, its status in the B-cell differentia- tion pathway and the mechanisms involved in lymphomagenesis remain unclear. ^{9,10} In contrast with MALT lym- phoma, in which lymphomagenesis is bet-						

Correspondence:

Professeur Gilles Salles, Service d'Hématologie, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite Cedex, France. E-mail: gilles.salles@chu-lyon.fr

for the transit of B cells into the germinal center.¹ Analysis of V_H gene sequences in B-cell lymphoma provides an estimate of the B-cell developmental stage at which malignant transformation occurs.² Furthermore the pattern of somatic mutation allows the origin of malignant B cells to be distinguished according to the germinal center trafficking.³⁻⁸

Three lymphoma types linked to the Bcell marginal zone have been recently recognized as distinct clinico-pathological entities in the World Health Organization (WHO) Classification⁹ extranodal mucosaassociated lymphoid tissue (MALT) lym-

S t n е 11 S n ter understood, analysis of immunoglobulin heavy-chain variable region genes in SMZL and NMZL has been limited to a few series of patients.¹¹⁻¹⁷ The first report showed that all cases of marginal zone lymphomas had somatic mutations, suggesting that these tumors arise from memory B cells, without any significant pattern resulting from antigen selection.¹² However, recent studies have indicated a more important molecular heterogeneity than expected before,^{11,13,14} including cases harboring germline V_H genes with higher clinical aggressiveness and shorter overall survival. There has, however, been no direct comparison between SMZL and NMZL with respect to somatic mutations of the rearranged $V_{\rm H}$ gene.

In the present study we investigated V⁺ gene usage and mutation pattern in 49 lymphoma cases (35 SMZL and 14 NMZL) in order to clarify the relationship between splenic and nodal marginal zone B-cell lymphomas, to further examine the cell of origin of these lymphomas and to correlate the somatic mutation pattern with disease characteristics.

Design and Methods

Patients and tissues samples

Thirty-five SMZL cases and 14 NMZL were selected from the files of the Pathology Department of the Hospital Lyon Sud (France), including cases already described¹⁵ and some new cases extensively characterized. The selection was based on the availability of clinical information and fresh-frozen biopsy specimens of lymph nodes or spleen before treatment. In addition, for 18 of the 35 splenic cases with significant bone marrow or peripheral blood infiltration (>20% tumor cells), an analysis of a paired sample of distinct origin (peripheral blood in 15 cases and bone marrow in 3 cases) was also performed. A paired peripheral blood sample was also examined for 1 of the 14 nodal cases. These paired samples were obtained during routine diagnostic procedures, at the same time as tissue biopsies and before any specific treatment. All cases met the diagnosis criteria of SMZL or NMZL in the WHO classification of lymphoid neoplasms.⁹ The patients' medical records were reviewed to determine age, gender, sites of involvement, stage of disease, International Prognosis Index (IPI) parameters at diagnosis and disease course.

Cytogenetic studies were performed in 43 patients of the present series, on the samples used for histological and immunologic investigations as previously described.¹⁸ In 32 patients, chromosomal analysis was performed on spleen samples. In 9 patients, chromosomal analysis was performed on lymph node biopsy material and in 2 patients on peripheral blood only.

Immunohistochemistry and pathology review

Routine hematoxylin-eosin and immunohistochemical studies on sections were available for all cases and were histologically reviewed by expert hematopathologists (FB, PF, ATG) according to the current criteria, as previously described.¹⁹

Polymerase chain reaction (PCR) amplification of the rearranged immunoglobulin (Ig) heavy chain genes

Genomic DNA was extracted from frozen tissue sections and frozen cellular suspension (peripheral blood or bone marrow) using the *High pure PCR template preparation kit* (Roche, France) according to the manufacturer's recommendations. The rearranged Ig heavy chain genes were amplified from genomic DNA (1 μ g) using a mixture of 6 forward primers annealing in the framework 1 region²⁰ in combination with a joining heavy chain consensus primer [JHC: TCGCAGACCCTCTCACTCACCTGT]. The PCR mixture contained 1×Taq buffer, 200 µM of each dNTP, 1.5 mM of MgCl₂, 1 U of Taq polymerase (Ampli-Taq Gold, Applied, France), and 0.2 µM of each primer in a final volume of 50 µL. PCR amplification consisted of an initial denaturation step at 94°C for 10 minutes, followed by 35 cycles at 94°C for 30 seconds, 64°C for 1 minute, and 72°C for 1 minute, with a final extension step at 72°C for 10 minutes. All PCR reactions were performed using appropriate positive and negative controls. PCR products were denatured at 95°C for 5 minutes followed by rapid random renaturation at 4°C for 1 hour (to enhance heteroduplex formation)²⁰ and then migrated on a 6% polyacrylamide gel. All patient's samples were evaluated by at least 2 independent PCR reactions (with similar conditions and using a $V{\scriptscriptstyle\rm H}$ family specific FRI primer in the second test). Moreover, we were able to perform an additional analysis on reverse-transcribed cDNA obtained from the same samples²¹ in 6 cases: 2 splenic cases and 4 nodal cases.

Cloning and sequencing of Ig heavy chain sequences

Monoclonal bands corresponding to $V_{\rm H}$ gene rearrangements were excised from 1,5% low-melting agarose gels and the PCR products were purified from the gel with QIAEX II kit (Qiagen, France) and subcloned in the pGEM T-easy II vector (Promega, France) following the manufacturer's recommendations. Sanger's chain termination method and fluorescent dideoxynucleotide chain termination²² was performed using an ABI sequencer and all clones were sequenced in both directions.

Each of the purified and cloned PCR products was submitted to sequencing from 2 to 4 times. Any case showing variation in 2 sequences was submitted to sequence confirmation with at least 2 other independent PCR, cloning and sequencing reactions.

Analysis of Ig heavy chain sequences

For each clone, the identification of the V_H sequence from FR1 to FR3 was performed by comparison with two databases: IgBlast (*http://www.ncbi.nlm.nih.gov/ igblast/*) and IGMT (*http://igmt.cines.fr/*).²³ The sequences were aligned with the human germline sequences presenting the highest homology. The ability to code for functional heavy chains was determined by translating DNA sequences into amino acids. Non-functional sequences were not further characterized. Somatic mutations were defined as nucleotide substitutions after elimination of the known polymorphisms described in the IGMT and IgBlast databases. Isolated single nucleotide discrepancy between 2 sequences obtained from the same sample was always submitted to verification as described above. When this single nucleotide change was found in only one sequence reaction, it was arbitrarily ascribed as a Tag polymerase error. Confirmed mutations found in multiple sequencing reactions in the same sample or in distinct specimens from the same patient were considered to represent intraclonal diversity. Percent of sequence identity was calculated for the aligned sequences from the beginning of FR1 until the end of FR3. Cases harboring < 98% homology were considered as mutated. DH gene segments were identified by alignment to human germline D_{H} gene segments and were considered homologous when a minimum of ten consecutive matches was observed.

For antigen selection analysis, each single point mutation in framework regions (FR) and complementarity-determining regions (CDR) of potentially functional sequences was compared with the respective germline sequence and classified as an R (replacement) or S (silence) mutation. The R/S ratio was calculated from these data. The binomial distribution model was used to calculate the probability that the number of R and S mutations in the FR and CDR sequences occurred by chance only.²⁴ In addition a multinomial model, described by Lossos *et al.*²⁵ and available at *http://www-stat.stanford.edu/immunoglobin*, was used to assess the probability of antigen selection in the FR and in the CDR.

Statistical analysis

Associations between variables were tested using the Yates' corrected χ^2 test. Survival analyses were performed using the Kaplan-Meier method.²⁶ The statistical significance of associations between individual variables and progression-free or overall survival was determined using the log-rank test.¹⁹ Values of p < 0.05 were considered statistically significant.

Results

Clinical and histological data

This population included 22 males and 27 females with a median age of 62 years [extremes 27–82 years] (Table 1). Patients were treated according to current guidelines at our institution.¹⁹ At the time of analysis, with a median follow-up of 71 months for patients remaining alive, 27 patients had experienced disease progression and 11 patients had died. Most cases had typical morphological, immunological and cytogenetic features of SMZL or NMZL. Cases of splenic lymphoma with more than 20% of villous lympho-

	Splenic type	Nodal type	All patients
			10
Number of patients	35	14	49
Mean age (years)	62	52	
Stage			
I	1	2	3
	0	0	0
	0	3	3
V	31	8	39
Bone marrow involvement	27	4	31
Performance status (ECOG s	scale)		
0-1	27	11	38
2-4	5	1	6

Table 1. Characteristics of the 49 patients.

cyte in peripheral blood were not included in this study. Expression of CD5 was observed in 7 of our cases (6 splenic and 1 nodal) in association with t(11;14)(q13;q32) in 5 cases (4 splenic and 1 nodal), an unusual feature already described in marginal zone lymphoma.^{19,21,27,28} Recent gene expression profiling studies confirmed that these features are also encountered in marginal zone lymphoma.^{21,29} These cases are further referred to here as *borderline cases* between marginal zone and mantle cell lymphoma.

Analysis of VDJ_H

We amplified and sequenced 55 clonal IgV_H rearrangements in 49 MZL patients (35 SMZL, 14 NMZL) since 6 cases displayed two distinct rearrangements, one isolated from the primary tumor and the other one from peripheral blood or bone marrow. Since we could not further demonstrate whether these cases represented bi-allelic rearrangement or detection of an unrelated B-cell clone in peripheral blood or bone marrow,^{13,30} these circulating clones were not further considered in the study. All cases described here, including cases with 2 distinct rearrangements, lacked stop codons in the V_H-J_H segments and were therefore potentially functional. Cases with no functional sequence were not included in this study

Table 2 shows the V^H gene used by each tumor and its homology with the germline counterpart. The most frequent V^H family encountered was V^H3, followed by V^H1, V^H4 and V^H5 (Table 3). In contrast, the V^H2 and V^H6 families were not represented. The frequencies of the V^H families differed from those usually present in peripheral and lymph node lymphocytes in normal individuals (Table 3). We identified a preferential usage of V^H gene in SMZL with overrep-

n°	specimen	VH GENE	allele	ID (%)	DH	JH	Ν
1*	spleen	1-8	1	100	ND	JH6	0
	blood	1-8	1	100	ND	JH6	0
2*	spleen	3-23	1	100	D2-15	JH5	0
2	blood	3-23	1	100	D2-15	JH5	0
3	blood	1-2	4	97	D3-3	JП4 IН/I	o Q
4	spleen	1-2	4	98	D3-9	JH6	4
	blood	1-2	4	98	D3-9	JH6	5
5	spleen	3-48	ND	92	D2-2	JH4	18
	bone marrow	3-48	ND	92	D2-2	JH4	18
6	spleen	3-7	1	99	D3-22	JH4	2
7	bone marrow	3-15	1	91	ND 2 2 C	JH5	25
1	blood	1-2	4	98	D3-3	JII4 IHA	3
8	spleen	3-23	ND	100	D4-17	JH6	0
-	blood	3-20	1	99	D3-22	JH6	2
9	spleen	3-23	3	89	ND	JH1	29
40	bone marrow	3-7	1	92	ND	JH5	21
10	spleen	1-18	ND	99	D3-3	JH4	2
11	spleen	1-18	ND 1	03 99	D3-3 ND	JH4 IH1	2 10
	blood	3-7	1	93	ND	IH1	19
12	spleen	1-2	4	98	D3-9	JH5	4
	blood	1-2	4	97	D3-10	JH3	6
13	spleen	3-15	1	91	D1-7	JH5	22
	blood	3-15	1	91	D1-7	JH5	22
14	spieen	3-30	ND	95 05	D2-21	JH2	13
15	spleen	3-30 1-2	2	90 87	D2-21 D1-26	JHZ IH5	32
10	blood	3-30	ND	96	D2-21	JH2	10
16	spleen	1-2	4	96	D3-3	JH4	11
	blood	1-2	4	96	D3-3	JH4	11
17*	spleen	3-7	1	99	D3-22	JH4	2
10	DIOOD	3-1 2.22	1	99	D3-22	JH4 IUつ	2
10	blood	3-33	3	91	D3-10 D3-10	IH3	21
19	spleen	1-3	1	93	D3-10	JH1	17
20	spleen	4-39	1	91	D6-13	JH5	22
21	spleen	1-2	4	96	D3-9	JH2	8
22	spleen	1-2	4	97	D3-10	JH3	5
23 24	spieen	4-34 1-61	ND 1	90 88	D3-3 D3-22		28
25	spleen	1-2	4	96	D3-22	JH4	7
26	spleen	3-33	1	94	D4-17	JH6	18
27	spleen	3-23	1	97	D6-13	JH4	8
28	spleen	3-30	ND	92	D3-16	JH5	17
29	spleen	3-1	1	92	ND	JH4	19
30	spieen	1-8		98	D6-6	JH4 IH6	4
32	spleen	4-39		90	D2-2	JH4	24
33	spleen	4-34	2	96	D5-12	JH6	10
34	spleen	3-15	7	91	ND	JH5	24
35	spieen	3-23	1	93	D3-10	JHO	18
30	blood	3-23 1-2	ND	93	D3-3	IH4	2
37	node	4-34	2	96	D3-22	JH4	8
38	node	4-61	1	89	D5-24	JH4	27
39	node	4-59	1	97	ND	JH6	6
40 /1*	node	3-1	ND 1	96	D3-22	JH3	11
41	node	3-61 1-3	1	90	D3-10 D3-10	JF14 H5	14 1
43	node	4-34	10	95	D3-22	JH4	10
44	node	4-34	2	92	D3-22	JH4	19
45	node	1-2	4	96	D3-3	JH4	10
46	node	3-11	3	92	ND	JH6	16
41 19	node	4-34 2 5 2	2	94	ND DS 3	JHG	16
40 19	node	5-03 1-21	1 11	03 90	ND 03-3	110 145	/ 17
	nouc	- 5-	11	55	110	5110	11

Table 2. VDJ_H families and number of mutations in the VDJ_H

sequence observed in the series

The similarity of the V_Hgene to the closest germline segment is shown according to The similarity of the Viegene to the closes germine segment is shown according to the IgBlast (bttp://www.ncbi.nlm.nib.gov/igblast/) and IGMT (bttp://igmt.cines.fr/) databases. The number of mutations in each Viegement is shown (N). Allele indicates the allele polymorphisms reported in the IGMT V-Quest database. In total, 35 splenic (cases 1 to 35) and 14 nodal cases (36 to 49) are included. The borderline cases between mantle cell lymphomas and marginal zone lymphomas (4 splenic and 1 nodal cases) are indicated with a "*". Table 3. Distribution of V_H gene usage in splenic and nodal marginal zone lymphoma.

V⊬ Family	Physiologic distribution ⁵⁷	All (n=49)	Samples splenic (n=35)	nodal (n=14)
V.,1	21.6%	15 (30.6%)	13 (37 1%)	2 (14 3%)
V⊮2	5.9%	0 (0%)	0%	2 (14.3%)
V⊮3	43.1%	21 (42.9%)	16 (45.7%)	5 (35.7%)
V⊬4	21.6%	12 (24.5%)	5 (14.3%)	7 (50%)
V⊮5	3.9%	1 (2%)	1 (2.9%)	0%
V⊮6	1%	0 (0%)	0%	0%

The frequency of the VH family distribution is compared with that described in normal peripheral blood lymphocytes

resentation of the VH1 gene family, especially VH1-2 allele 04 segment (8/35)³¹ while the VH1-69 segment commonly found in chronic lymphocytic leukemia, was never identified. In contrast, NMZL demonstrated a selective usage of VH4 family segments (50%) with overrepresentation of V_{H4} -34 (5/14)474. Interestingly 5 cases (4 SMZL and 1 NMZL) displayed a common use (with a distinct mutation pattern) of VH1-2 04 DH3-3 and JH4 with few or no mutation (96% to 100%) (Table 2). The alignment of the heavy chain third complementary-determining region 3 (HCDR3) amino acid sequences in these cases and 23 showed 2 similar sequences (Figure 1) indicating the possibility of selection by a common antigen. Although serological tests for hepatitis C virus (HCV) had been done for all patients, no case with HCV infection was found in this series.

Analysis of mutation status

In total, 13 cases (26%) were considered as unmutated (homology > 98%) whereas 36 cases (74%) were mutated. Out of 35 SMZL, 11 cases (31%) were unmutated whereas 2 single cases (14%) out of 14 NMZL were unmutated (Table 3).

Most of the mutations were single nucleotide substitutions but the substitution of 2 or 3 adjacent nucleotides was frequent within the same codon. No deletion was observed. One insertion (3 nucleotides) was observed. Transitions were more frequent (n=314) than transversions (n=254).

Intraclonal diversity

Three cases out of 18 for which clones were analyzed in spleen and peripheral blood demonstrated intraclonal-diversity. For each case, the same related sequence was repeatedly found (Table 5) with strong evidence of clonal selection in one case (LS-3). The other 15 cases were strictly identical in both tissues in multiple PCR amplicons (see Material and Methods)

Figure 1. Alignment of amino acid and nucleotide sequences of CDR3 in cases 3 and 23.																					
Case 3	TGT	GCG	AGA	TCC	AGT	GTA	TTA	CGA	Π	ΠG	GAG	TGG	ΠG	ACG	GGG	GAG	TAC	CAC	Π	GAC	TAC
Case 23	TGT	GCG	AGA	TCC	AGT	GTA	TTA	G GA	Π	ΠG	GAG	TGG	ΠG	ACG	GGG	GAG	TAC	CAC	Π	GAC	TGG
	С	А	R	S	S	V	L	R	F	L	E	W	L	T	G	E	Y	Η	F	D	Y

Out of the 5 cases using the same $V_{H1-2} 04/D_{H3-3}/J_{H4}$, with a unique sequence and junctional motif (Table 3), cases 3 and 23 also showed identical amino-acid CDR3. The sequences of CDR3 were determined by counting the number of amino acids between position H94 at the 3' end of FR3 (usually two amino acids downstream of the conserved cysteine) and position H102 at the beginning of FR4 (a conserved tryptophan in all JH sequences). As indicated in the boxes, distinct nucleotide sequences result in an identical amino-acid sequence of the CDR3, suggestive of the recognition of a common antigen.

therefore confirming that the $V_{\rm H}$ sequence (spleen, node, peripheral blood or bone marrow) was clearly that of the tumor clone.

Antigen selection

A typical pattern of antigen selection, as tested by the binomial and multinomial models, was found in 12 cases (8 SMZL and 4 NMZL) with increased replacement mutations in the CDR and decreased mutations in the FR (Table 4). The number of cases with significant antigen selection was found to be higher using the multinomial model rather than the binomial models (12 versus 6 cases, respectively).

Hypermutation status, cytogenetic findings and clinical outcome

The 4 splenic cases that were borderline between marginal and mantle cell lymphoma with a translocation t(11;14) were characterized by the lack of mutation identified in the VDJ^H sequence. The pattern of V^H usage in these borderline cases did not display any specific characteristics. The absence of mutation was not associated with deletion 7q or any other cytogenetic abnormality. With a median follow-up of 71 months, no differences in progression-free or overall survival were found between the unmutated and mutated cases (log-rank, p=0.58 and p=0.14, respectively) (*not shown*). These findings were identical even when only the 35 SMZL cases were considered or when the t(11,14) positive cases were excluded (*not shown*).

Discussion

The pathogenesis of SMZL and NMZL and the relationship between the two entities are still poorly understood. Whereas SMZL and NMZL share many morphological, immunophenotypic and cytogenetic features, their clinical outcome is distinct¹⁹ and some karyotypic aberrations are more common in one or the other entity, suggesting the possible existence of a different pathogenesis. The present study was undertaken to clarify the issues of V_H gene use and somatic mutations in SMZL and NMZL. For this purpose, molecular analysis of the immunoglobulin V_H region was performed in 49 untreated patients (35 SMZL and 14 NMZL). Clinical, morphological, cytological, immunophenotypic and cytogenetic data were available for all the patients. In addition, peripheral blood or bone marrow samples from 18 splenic cases and 1 nodal case were analyzed. The proportion of cases with immunoglobulin gene hypermutation and the V_H gene segment usage appear to differ markedly between SMZL and NMZL, suggesting distinct pathological entities that may arise from different B-cell subsets. In addition, the pattern of V_H gene usage and somatic mutation observed in some cases is suggestive of antigen-driven lymphomagenesis.

Our analyses confirm the molecular heterogeneity previously reported in SMZL and NMZL with unmutated and mutated cases.¹³⁻¹⁵ Out of 35 SMZL, 13 cases were unmutated whereas 2 single cases out of 14 NMZL were unmutated. In addition, this study demonstrated a biased V_H gene use in both lymphoma entities, with overrepresentation of V_{H1} , especially $V_{\rm H}$ 1-2, in SMZL cases and over-representation of $V_{\rm H}$ 4-34 in NMZL cases. A biased V_H gene family usage with respect to the peripheral blood cell repertoire has previously been reported in SMZL (VH1-2),^{13,32} but not in NMZL.^{14,15} When borderline cases with mantle cell lymphoma were not taken into account, this biased usage of VH gene appeared even more striking (8) SMZL cases with VH1-2 out of 32). Interestingly within the 9 cases which harbored the VH1-2 segment, 5 of them (4 SMZL, 1 NMZL) had a common use of $V_{H}1-2$ allele 04, DH3-3 and JH4, with no or few distinct mutations (100% to 96% homology). Of note, 2 of these 5 cases had an amazing conservation of the idiotype sequence. This feature may imply the recognition of a common antigen. Overall, this pattern of biased $V_{\rm H}$ gene usage is suggestive of an antigen selection process. It is reminiscent of chronic lymphocytic leukemia, in which cases with canonical CDR3 have been described³³ and with the restricted VH1-69 DH3-22 JH4 usage and similar CDR3 in cases of nodal marginal zone lymphomas associated with HCV.³⁴ In addition a biased usage of the V \pm 1-69/V κ A27 combination has also been described in HCV-associated lymphomas.³⁵

Table 4. Distribution of mutations in V_H sequences and antigen selection analysis with the binomial (Chang and Casali) and multinomial (Lossos) method.

Case	Gene	Identity(%)	N	Observed R/S CDR	Observed R/S FR	Expected R/S CDR	Expected R/S FR	Loss p CDR	os p FR	Chang a p CDR	nd Casali p FR
SMZL 3 5 9 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 31 32 34 35	VH1-2 VH3-48 VH3-23 VH3-7 VH3-7 VH3-15 VH3-30 VH1-2 VH1-2 VH1-2 VH1-3 VH4-39 VH1-2 VH1-2 VH1-2 VH1-2 VH1-2 VH3-33 VH3-73 VH3-30 VH3-73 VH3-7 VH4-34 VH3-15 VH3-23	97 92 89 93 91 95 87 96 93 91 96 93 91 96 97 96 88 96 94 96 92 91 92 90 92 91 92 90 91 93	$\begin{array}{c} 6\\ 12\\ 21\\ 13\\ 21\\ 11\\ 26\\ 12\\ 14\\ 18\\ 8\\ 4\\ 8\\ 24\\ 5\\ 14\\ 6\\ 14\\ 18\\ 16\\ 20\\ 7\\ 20\\ 15\\ \end{array}$	0/1 7/0 5/3 4/2 5/3 2/1 9/2 7/0 4/2 5/1 4/1 1/0 3/1 5/2 1/2 3/0 5/0 4/1 6/2 8/1 5/3 1/2 5/1 4/2	3/2 4/1 9/4 2/5 8/5 6/2 8/5 4/1 4/4 7/5 2/1 3/0 2/2 9/9 2/0 1/10 1/0 5/3 10/0 6/1 6/6 3/1 7/7 6/3	$1/0 \\ 3/1 \\ 4/1 \\ 3/0 \\ 4/1 \\ 0/5 \\ 7/1 \\ 3/1 \\ 3/1 \\ 4/1 \\ 1/0 \\ 2/0 \\ 5/1 \\ 1/0 \\ 3/1 \\ 1/0 \\ 3/1 \\ 4/1 \\ 3/1 \\ 4/1 \\ 3/1 $	03/01 7/2 12/4 7/2 11/4 4/2 14/5 7/2 8/2 9/4 8/3 2/1 4/2 12/5 3/1 8/3 3/1 8/3 3/1 8/3 10/3 9/3 10/4 4/1 10/0 8/3	0.83722 0.00784 0.66095 0.06042 0.12245 0.30732 0.00109 0.00012 0.44069 0.06377 0.00652 0.70894 0.35592 0.18288 0.30741 0.20651 0.00010 0.19474 0.00652 0.01018 0.01724 0.40770 0.10331 0.07832	0.16013 0.00150 0.19851 0.00042 0.01941 0.30787 0.0176 0.02126 0.00038 0.03459 0.01868 0.91993 0.55828 0.00704 0.16355 0.00002 0.0765 0.07891 0.11920 0.16530 0.00082 0.154000 0.0111 0.04636	0 0.0043 0.18 0.17 0.7 0.29 0.46 0.0043 0.18 0.17 0.043 0.41 0.15 0.19 0.4 0.25 0.0019 0.4 0.25 0.0019 0.18 0.096 0.0083 0.19 0.35 0.15 0.152	$\begin{array}{c} 0.3\\ \textbf{0.0011}\\ 0.43\\ 0.004\\ 0.07\\ 0.22\\ 0\\ \textbf{0.0011}\\ 0.03\\ 0.09\\ 0.081\\ 0.29\\ 0.07\\ 0.052\\ 0.27\\ 0.0003\\ 0.063\\ 0.073\\ 0.18\\ 0.079\\ 0.09\\ 0.24\\ 0.17\\ 0.105\\ \end{array}$
NM2L 36 37 38 39 40 41 43 44 45 46 47 49	VH4-34 VH4-61 VH4-59 VH3-7 VH1-3 VH3-64 VH3-23 VH4-34 VH1-2 VH3-11 VH4-34 VH4-34	96 89 97 93 95 95 92 96 92 94 93	7 25 6 8 11 9 9 16 6 16 14 14	2/1 7/3 0/3 1/1 4/2 4/2 4/1 3/3 1/1 5/2 2/1 4/0	1/3 8/8 2/1 3/3 4/1 6/3 3/1 5/5 1/3 5/3 7/4 5/5	1/0 6/1 1/0 2/0 2/0 3/1 2/0 3/1 1/0 3/1 3/1 3/1	4/1 13/5 3/1 4/1 6/2 8/3 5/2 9/3 3/1 8/3 8/3 8/3	0.12843 0.03709 0.77456 0.50387 0.0245 0.08271 0.01194 0.22238 0.36287 0.02632 0.38943 0.05364	0.00676 0.00119 0.09219 0.08983 0.03747 0.04473 0.04829 0.0635 0.01516 0.0000 0.16832 0.02301	0.28 0.13 0 0.31 0.047 0.19 0.072 0.25 0.382 0.12 0.24 0.171	0.0333 0.09 0.17 0.18 0.045 0.01 0.12 0.034 0.06 0.054 0.19 0.076

The distribution of replacement (R) and silent (S) mutations was analyzed by considering all possible mutations, as described by Chang and Casali²⁴ or by Lossos in cases with mutations superior to 2%. Statistical evidence (with both P for CDR and Fr regions < 0.05) for antigen driven mutations are indicated in bold. When considering the multinomial method, antigen selection was identified in 8/24 SMZL and 4/12 NMZL. R denotes a replacement mutation, S a silent mutation, and R/S the ratio; N is the total number of mutations observed. CDR = complementary-determining region; FR: framework region; VH: variable region of the heavy chain .

The possibility of antigen-driven lymphomagenesis has already been demonstrated in some subsets of marginal zone lymphomas. For instance, MALT lymphoma of the stomach is acquired in the context of chronic lymphoid proliferation due to the presence of *Helicobacter pylori* and can be cured with antibiotics.³⁶⁻⁴⁰ There is some evidence indicating that *Borrelia burgdorferi* may be implicated in the pathogenesis of certain cutaneous marginal zone lymphomas.^{41,42} Several recent studies, but not the present series, have reported a high rate of HCV infection in patients with marginal zone lymphomas.^{43,44} Furthermore, the treatment of HCV infection in HCV-infected patients with SMZL has been shown to be associated with an antilymphoma effect.⁴⁵ The findings that an antigen-driven selection process may occur in other marginal zone lymphoma types is therefore of interest. In the present study, evidence for antigen-driven mutations was identified in 8/35 SMZL and 4/14 NMZL with characteristics of antigen-selected antibodies that are under positive pressure to provide the *best fit* for antigen while retaining the framework structure to provide the scaffolding for the antigen-contacting CDR.²⁴

An ongoing somatic mutation process usually indicates that the mutation machinery is active in the tumor cells after malignant transformation, suggesting

Table 5. Intraclonal diversity.										
Case no.	Specimen	Mutation number	Variations number	Subclones number						
3	spleen	8	0	6						
3	blood	8 or 9	1	6 (2 with 8 mutations and 4 with 9 mutations)						
4	spleen	3 or 4	0	6 (3 with 3 and 3 with 4)						
4	blood	4 or 5	1	7 (3 with 4 mutations and 4 with 5 mutations)						
14	Spleen	12 or 13	1	6 (4 with 12 mutations and 2 with 13)						
14	blood	12	0	6						

Cases in which sequence variations in a related clone were identified between different clones in the same sample (case 4 and 14) or in distinct specimens obtained from the spleen and from the peripheral blood (cases 3, 4 and 14).

of a germinal center (GC) origin.¹ As opposed to the common finding in cases of follicular lymphoma,⁴⁶ the low number of cases with intraclonal heterogeneity described here could also suggest that the tumor cells went through the germinal center but are no longer submitted to the somatic hypermutation mechanism. Of note, the average mutation frequency was rather low. This low frequency of somatic mutation in the V_H genes indicates that the tumor cells may derive from cells different from usual GC cells.⁴⁷ Indeed, GC cells are considered to acquire their hypermutation profile during prolonged interaction of the tumor cell with the GC microenvironment. In the present series, evidence of antigen encounter (as shown by the presence of somatic mutation) but accompanied by a marked proportion of clones without any affinity maturation characteristics may suggest that the cell of origin of these lymphomas could be a B-cell implicated in Tcell-independent immune responses. Recent studies in rodents demonstrated that marginal zone B cells play a role in immunologic response to T-independent type 2 antigens, such as bacterial capsular polysaccharide, indicating that they are the first line of the immune reaction against blood-borne antigen.⁴⁸ All together and emphasized by the lymphoma localization in the spleen, these findings allow us to hypothesize that SMZL cells may share several characteristics with superantigen T-independent selected B cells.

Our group and others have reported some cases of marginal zone lymphomas associated with the translocation $t(11;14)^{21,27,19}$ that do not have the characteristics of mantle cell lymphomas. The lack of somatic mutation in the 4 splenic borderline cases supports the individualization of this subgroup but does not allow these cases to be classified as mantle cell lymphomas which also harbor mutations in about 30% of the cases.⁴⁹

The mutational pattern distinguishes the cases in this series from other B-cell lymphomas. Other B-cell lymphoproliferations, in particular chronic lymphocytic leukemia have more unmutated cases (50%) with a distinct VH usage: VH1-69 (20%), VH4-34, and sometimes VH3-7,^{50,51} 3-21 and 3-23. VH1-69 gene usage has also been described in MALT lymphoma and in HCV-associated lymphomas,34 whereas it was not observed in this series. Over-representation of VH4-34 was reported in diffuse large B-cell lymphoma, high grade MALT, mantle cell and Burkitt's lymphomas⁵²⁻⁵⁵ and primary central nervous system lymphomas.⁵⁶ The VH family usage and mutational pattern of NMZL is therefore closer to that observed in diffuse large Bcell lymphoma and follicular lymphomas (VH4-34) but these cases are usually characterized by a higher number of mutations, marked antigen selection and more intraclonal diversity.46

In contrast to previous reports on a similar number of SMZL patients or to classical findings in patients with chronic lymphocytic leukemia, in whom unmutated cases behave more aggressively, the prognosis of marginal zone lymphoma patients in this series does not appear to be influenced by the immunoglobulin mutation status. Whether this reflects some heterogeneity in SMZL patient populations or the lack of prognostic significance of immunoglobulin hypermutation status in marginal zone lymphoma patients, as also reported recently in mantle cell lymphoma patients,⁴⁹ remains to be determined.

AT-G, FD, FB, GS: substantial contributions to conception and design, acquisition of data, analysis and interpretation of data, drafting the article or revising it critically for important intellectual content, final approval of the version to be published; EBS: substantial contributions to conception and design, acquisition of data, analysis and interpretation of data; ECB: substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data, final approval of the version to be published; PF: final approval of the version to be published; LB: final approval of the version to be published; SG, CT, CC, BC: substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data, final approval of the version to be published Supported by a grant from the Comité du Rhône de la Ligue Nationale contre le Cancer. ATG was also supported by the Association pour la Recherche contre le Cancer.

' Manúscript received November 2, 2004. Accepted March 4, 2005.

References

- 1. Kuppers R, Klein U, Hansmann ML, Rajewsky K. Cellular origin of human B-cell lymphomas. N Engl J Med 1999; 341:1520-9.
- 2. Matolcsy A, Warnke RA, Knowles DM. Somatic mutations of the translocated bcl-2 gene are associated with morphologic transformation of follicular lymphoma to diffuse large-cell lym-phoma. Ann Oncol 1997;8 Suppl 2:119-
- 3. Bahler DW, Campbell MJ, Hart S, Miller RA, Levy S, Levy R. Ig VH gene expression among human follicular lymphomas. Blood 1991;78:1561-8.
- 4. Berek C, Berger A, Apel M. Maturation of the immune response in germinal centers. Cell 1991;67:1121-9.
- 5. Hummel M, Tamaru J, Kalvelage B, Stein H. Mantle cell (previously centro-cytic) lymphomas express VH genes with no or very little somatic mutations like the physiologic cells of the follicle mantle. Blood 1994;84:403-7.
- 6. Levy S, Kon S, Levy R. Somatic muta-tions in the Ig VH genes of human B cell lymphoma. Acta Paediatr Jpn 1987; 9.561-5
- 7. Rajewsky K. Clonal selection and Kajewsky K. Charl Selection and learning in the antibody system. Nature 1996;381:751-8.
 Kuppers R, Zhao M, Hansmann ML, Rajewsky K. Tracing B cell develop-
- ment in human germinal centres by molecular analysis of single cells picked from histological sections. Embo J 1993;12:4955-67.
- 9. Jaffe ES HN, Stein H, Vardiman JW. Tumours of Haematopoietic and and Lymphoid tissues. Lyon; 2001. 10. Oscier D, Owen R, Johnson S. Splenic
- marginal zone lymphoma. Blood Rev 2005;19:39-51.
- Zhu D, Orchard J, Oscier DG, Wright DH, Stevenson FK. V(#) gene analysis of splenic marginal zone lymphomas reveals diversity in mutational status and initiation of somatic mutation in vivo. Blood 2002;100:2659-61.
- 12. Tierens A, Delabie J, Pittaluga S, Driessen A, DeWolf-Peeters C. Driessen A, DeWolf-Peeters C. Mutation analysis of the rearranged immunoglobulin heavy chain genes of marginal zone cell lymphomas indicates an origin from different marginal zone B lymphocyte subsets. Blood 1998;91:2381-6.
- 13. Algara P, Mateo MS, Sanchez-Beato M, Mollejo M, Navas IC, Romero L. Analysis of the IgV(#) somatic mutations in splenic marginal zone lym-phoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course. Blood 2002; 99: 1299-304
- 14. Conconi A, Bertoni F, Pedrinis E, Motta T, Roggeró E, Lumińari S. Nodal marginal zone B-cell lymphomas may arise from different subsets of marginal zone B lymphocytes. Blood 2001;98:781-6. 15. Camacho FI, Algara P, Mollejo M, Gar-
- cia JF, Montálban C, Martinez N. Nodal marginal zone lymphoma: a heterogeneous tumor: a comprehensive analysis of a series of 27 cases. Am J Surg Pathol 2003;27:762-71.
- Tierens A, Delabie J, Malecka A, Wang J, Gruszka-Westwood A. Splenic marginal zone lymphoma with villous lympho-cytes shows on-going immunoglobulin gene mutations. Am J Pathol 2003;162:

681-9

- 17. Bahler DW, Pindzola JA, Swerdlow SH. Splenic marginal zone lymphomas appear to originate from different B cell
- types. Am J Pathol 2002;161:81-8. Callet-Bauchu E, Salles G, Gazzo S, Poncet C, Morel D, Pages J. Trans-18 locations involving the short arm of chromosome 17 in chronic B-lymphoid disorders: frequent occurrence of dicentric rearrangements and possible association with adverse outcome. Leukemia 1999;13:460-8.
- Berger F, Felman P, Thieblemont C, Pradier T, Baseggio L, Bryon PA. Non-MALT marginal zone B-cell lym-phomas: a description of clinical presentation and outcome in 124 patients. Blood 2000;95:1950-6.
- van Dongen JJ, Langerak AW, Brugge-mann M, Evans PA, Hummel M, Lavender FL. Design and standardiza-20 tion of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003;17:2257-317.
- Thieblemont C, Nasser V, Felman P, Leroy K, Gazzo S, Callet-Bauchu E, 21. Small lymphocytic lymphoma, margin-al zone B-cell lymphoma, and mantle cell lymphoma exhibit distinct geneexpression profiles allowing molecular diagnosis. Blood 2004;103:2727-37.
- Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR. Fluo-22 rescence detection in automated DNA sequence analysis. Nature 1986; 321: 674-9.
- Giudicelli V, Chaume D, Lefranc MP. 23. IMGT/V-QUEST, an integrated soft-ware program for immunoglobulin and T cell receptor V-J and V-D-J rearrange-ment analysis. Nucleic Acids Res 2004; 32:W435-40.
- 24. Chang B, Casali P. The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replace-
- ment. Immunol Today 1994;15:367-73. Lossos IS, Tibshirani R, Narasimhan B, Levy R. The inference of antigen selec-25. tion on Ig genes. J Immunol 2000; 165:5122-6.
- 26. Kaplan EL MP. Non parametric estimation from incomplete observations. J
- Am Sat Assoc 1958;53:157. Jadayel D, Matutes E, Dyer MJ, Brito-Babapulle V, Khohkar MT, Oscier D. Splenic lymphoma with villous lymphocytes: analysis of BCL-1 rearrangements and expression of the cyclin D1 gene. Blood 1994;83:3664-71. Oscier DG, Matutes E, Gardiner A,
- 28. Glide S, Mould S, Brito-Babapulle V, Catovsky D. Cytogenetic studies in splenic lymphoma with villous lym-phocytes. Br J Haematol 1993;85:487-
- Campo E. Genetic and molecular genetic studies in the diagnosis of B-cell 29. lymphomas I: mantle cell lymphoma, follicular lymphoma, and Burkitt's lym-phoma. Hum Pathol 2003;34:330-5.
- Cerny J, Slavickova A, Krepelova A, Trneny M, Karban J, Klener P. Biallelic 30 IgH rearrangements in patients with indolent lymphoproliferative disorders: molecular and practical implications. J Cell Physiol 2004;199:217-26. Lefranc MP, Giudicelli V, Busin C, Malik A, Mougenot I, Dehais P. LIGM-
- 31 DB/IMGT: an integrated database of Ig

and TcR, part of the immunogenetics database. Ann NY Acad Sci 1995; 764: 47-9.

- 32. Miranda RN, Cousar JB, Hammer RD, Collins RD, Vnencak-Jones CL. Somatic mutation analysis of IgH variable regions reveals that tumor cells of most parafollicular (monocytoid) B-cell lymphoma, splenic marginal zone Bcell lymphoma, and some hairy cell leukemia are composed of memory B lymphocytes. Hum Pathol 1999; 30: 306-12.
- Ghiotto F, Fais F, Valetto A, Albesiano E, Hashimoto S, Dono M. Remarkably similar antigen receptors among a sub-set of patients with chronic lymphocytic leukemia. J Clin Invest 2004; 113: 1008-16.
- 34. Marasca R, Vaccari P, Luppi M, Zuc-chini P, Castelli I, Barozzi P. Immunoglobulin gene mutations and fre-quent use of VH1-69 and VH4-34 segments in hepatitis C virus-negative nodal marginal zone B-cell lymphoma. Am J Pathol 2001;159:253-61.
- Chan CH, Hadlock KG, Foung SK, Levy S. V(#)1-69 gene is preferentially used by hepatitis C virus-associated B cell lymphomas and by normal B cells 35 responding to the E2 viral antigen. Blood 2001;97:1023-6.
- 36. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 1991; 338:1175-6.
- 37. Bayerdorffer E, Neubauer A, Rudolph B, Thiede C, Léhn N, Eidt S. Ŕegression of primary gastric lymphoma of mucosa-associated lymphoid tissue type after cure of Helicobacter pylori infection. MALT Lymphoma Study Group. Lancet. 1995;345:1591-4.
- Montalban C, Manzanal A, Boixeda D, Redondo C, Alvarez I, Calleja JL. Helicobacter pylori eradication for the 38 treatment of low-grade gastric MALT lymphoma: follow-up together with sequential molecular studies. Ann Oncol 1997;8 Suppl 2:37-9.
- Roggero E, Zucca E, Pinotti G, Pascarella A, Capella C, Savio A. Eradication of Helicobacter pylori infection in primary low-grade gastric Roggero E, 39 lymphoma of mucosa-associated lymphoid tissue. Ann Intern Med 1995; 22:767-9
- Steinbach G, Ford R, Glober G, Sample D, Hagemeister FB, Lynch PM. Antibiotic treatment of gastric lymphoma of mucosa-associated lymphoid tissue. An uncontrolled trial. Ann Intern Med 1000.121.90 05 1999;131:88-95. 41. Slater DN. Borrelia burgdorferi-associ-
- Slater DN. Borrelia burgdorteri-associ-ated primary cutaneous B-cell lym-phoma. Histopathology 2001;38:73-7. Cerroni L, Zochling N, Putz B, Kerl H. Infection by Borrelia burgdorferi and cutaneous B-cell lymphoma. J Cutan Pathol 1997;24:457-61. Weng WK, Levy S. Hepatitis C virus (HCV) and lymphomagenesis. Leuk Lymphoma 2003;44:1113-20. Arcaini L, Paulli M, Boveri E, Vallisa D, Bernuzzi P. Orlandi E. Splenic and 42.
- 43.
- Bernuzzi P, Orlandi E. Splenic and nodal marginal zone lymphomas are indolent disorders at high hepatitis C virus seroprevalence with distinct presenting features but similar morphologic and phenotypic profiles. 2004;100:107-15. Cancer
- Hermine O, Lefrere F, Bronowicki JP, Mariette X, Jondeau K, Eclache-Sau-

dreau V. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med 2002;347:89-94.

- to Appendix C whits infection. N Engl J Med 2002;347:89-94.
 46. Ottensmeier CH, Thompsett AR, Zhu D, Wilkins BS, Sweetenham JW, Stevenson FK. Analysis of VH genes in follicular and diffuse lymphoma shows ongoing somatic mutation and multiple isotype transcripts in early disease with changes during disease progression. Blood 1998;91:4292-9.
 47. Toellner KM, Jenkinson WE, Taylor DR, Khan M, Sze DM, Sansom DM.
- 47. Toellner KM, Jenkinson WE, Taylor DR, Khan M, Sze DM, Sansom DM. Low-level hypermutation in T cellindependent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J Exp Med 2002;195:383-9.
- pared with high mutation rates associated with T cell-dependent germinal centers. J Exp Med 2002;195:383-9.
 48. Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur J Immunol 1997; 27: 2366-74.
- Camacho FI, Algara P, Rodriguez A, Ruiz-Ballesteros E, Mollejo M, Martinez N. Molecular heterogeneity in MCL

defined by the use of specific VH genes and the frequency of somatic mutations. Blood 2003;101:4042-6.

- Capello D, Fais F, Vivenza D, Migliaretti G, Chiorazzi N, Gaidano G. Identification of three subgroups of B cell chronic lymphocytic leukemia based upon mutations of BCL-6 and IgV genes. Leukemia 2000;14:811-5.
- Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(h) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848-54.
- Funkhouser WK, Warnke RA. Preferential IgH V4-34 gene segment usage in particular subtypes of B-cell lymphoma detected by antibody 9G4. Hum Pathol 1998;29:1317-21.
- by J. Marginal zone ique activation, pro-ungolobulin secreto-'Immunol 1997; 27:
 ra P. Rodriguez A, Mollejo M, Martinerogeneity in MCL
 53. Hallas C. Greiner A, Peters K, Muller-Hermelink HK. Immunoglobulin VH genes of high-grade mucosa-associaed lymphoid tissue lymphomas show a high load of somatic mutations and evidence of antigen-dependent affinity maturation. Lab Invest 1998;78:277-87.
 54. Hallas C. Greiner A, Peters K, Muller-RI, Hermelink HK. Immunoglobulin VH genes of high-grade mucosa-associaed lymphoid tissue lymphomas show a high load of somatic mutations and evidence of antigen-dependent affinity maturation. Lab Invest 1998;78:277-87.
 55. Bir RI, Hermelink HK. Immunoglobulin VH genes of high-grade mucosa-associaed lymphoid tissue lymphomas show a high load of somatic mutations and evidence of antigen-dependent affinity maturation. Lab Invest 1998;78:277-99:248

- 54. Chapman CJ, Wright D, Feizi HP, Davis Z, Stevenson FK. V(H) gene analysis of Burkitt's lymphoma in children from north-western Iran. Br J Haematol 1998;103:1116-23.
- 55. Lossos IS, Alizadeh AA, Eisen MB, Chan WC, Brown PO, Botstein D. Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc Natl Acad Sci USA 2000;97:10209-13.
- 56. Sekita T, Tamaru JI, Kaito K, Katayama T, Kobayashi M, Mikata A. Primary central nervous system lymphomas express Vh genes with intermediate to high somatic mutations. Leuk Lymphoma 2001;41:377-85.
- 57. Brezinschek HP, Foster SJ, Brezinschek RI, Dorner T, Domiati-Saad R, Lipsky PE. Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(*)/IgM* and CD5(*)/IgM* B cells. J Clin Invest 1997; 99:2488-501.